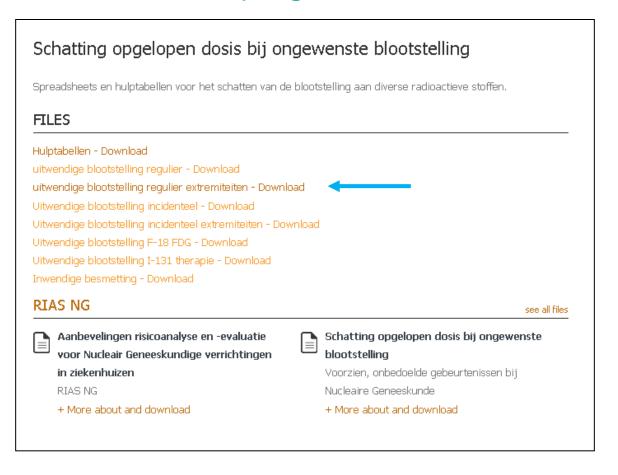
RIAS-NG: aandachtspunten bij het berekenen van extremiteitendoses

Marinette van der Graaf, perifere stage in Rijnstate

Begeleiders: Bart Klein Rudi Hoekema

RIAS-NG: Wettelijke verplichting

Besluit Stralingsbescherming, artikel 10:


'de ondernemer zorgt ervoor dat door of onder toezicht van een deskundige, [] de plannen voor handelingen voorafgaand aan de uitvoering ervan kritisch worden bestudeerd, de risico's ervan geïnventariseerd en geëvalueerd en toestemming verleend, voordat met de handeling wordt aangevangen.'

- Risico Inventarisatie en Analyse Stralingshygiëne
 - Nucleaïre geneeskunde

Aanbevelingen Nederlandse Commissie Stralingsdosimetrie (NCS)


http://radiationdosimetry.org/documents/blootstelling-ng

Excelfile berekening extremiteitendoses

1	2	3	4	5	6	7	8	9	10	11	12	13	14
Radiofarma con	gem. activiteit	bron constante h(0,07)	tijdsduur handeling	aantal handeling en per jaar	dikte Pb afschermi ng bron	halvering s-dikte in Pb	afstand tot bron	aantal HVL- dikten Pb	transmis sie T	dosis- tempo	Index dosis- tempo (dosiste mpo/ref_ dosis 1)	jaardosis per handeling	Index jaardosis (jaardosis / ref_dosis 2)
	(MBq)	(µSv/h per MBq op 10 cm)		(#ʃaar)	[mm]	[mm]	[cm]	[#HVL- dikten]		(mSv/h)	dusis iy	(mSv/jaar)	Σ,
F-18-FDG optrekken met pincet	450	2000	0.5	1000	20	6	20	3.3	0.10	2.23E+01	89.3	186.0	7.4
F-18-FDG optrekken zonder pincet	450	2000	0.4	1000	20	6	7.5	3.3	0.10	1.59E+02	635.0	1058.3	42.3

3.11 mSv/jr

16.83 mSv/jr

~60 x lager

Excelfile berekening extremiteitendoses

		1				1							
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Radiofarma con	gem. activiteit	bron constante h(0,07)	tijdsduur handeling	aantal handeling en per jaar	dikte Pb afschermi ng bron	halvering s-dikte in Pb	afstand tot bron	aantal HVL- dikten Pb	transmis sie T	dosis- tempo	Index dosis- tempo (dosiste mpo/ref_ dosis 1)	jaardosis per handeling	Index jaardosis (jaardosis / ref_dosis 2)
	(MBq)	(µSv/h per MBq op 10 cm)		(#ʃaar)	[mm]	[mm]	[cm]	[#HVL- dikten]		(mSv/h)		(mSv/jaar)	
	, "		, ,										
F-18-FDG optrekken met pincet	450	2000	0.5	1000	20	6	20	3.3	0.10	2.23E+01	89.3	186.0	7.4
F-18-FDG optrekken zonder pincet	450	2000	0.4	1000	20	6	7.5	3.3	0.10	1.59E+02	635.0	1058.3	42.3

Bronconstantes dosisequivalentempo's h(0,07) en h(10)

Bos et al. Inleiding tot de Stralingshygiëne, appendix F

Nuclide	h(0,07)	h(10)	Ratio h(0,07)/h(10)
	(µSv/h per MBg op	(µSv/h per MBg op	gecorrigeerd naar
	10 cm)	1 m)	afstand
¹⁸ F	2000	0.166	120
^{99m} Tc	300	0.023	130

h(0.07)

Ontleend aan N. Petoussi, et al. dose distributions in the ICRU sphere for monoenergetic photons and electrons and for ca. 800 radionuclides, GSF-Bericht 7/93, 1993

h(10)

Ontleend aan A.S. Keverling Buisman, Handboek radionucliden en indien daar niet vermeld aan N. Petoussi et al.

Dose distributions in the ICRU sphere for monoenergetic photons and electrons and for

Appendix

Table A1

-shacher, G. Drexler

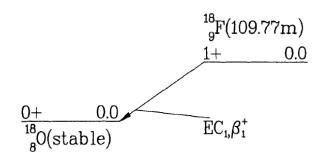
N. Petoussi, M. Zankl.

Element	. Z	Electron Contribution	Photon Contribution	Sum	
					U sphere at the main axis sources at a distance of
я	3	0.00E+00	1.47E-03	1.472-03	
BE	7	9.85E-05	7.72E-01	7.722-01	1 1
BZ.	10	1.65E+03	0.00E+00	1.65E+03	$^{-1} \cdot GBq^{-1}$.
C	11	1.46E+03	1,60E+01	1.48E+03	
N	13	1.34E+03	1.692+01	1.362+03	
C	14	1.53E+02	0.00E+00	1.53E+02	
0	15	1.152+03	1.732+01	170+03	
7	18	1.66E+03	1.60E+01	1.682+03	>
RH	99H	1.26E+02	1.342+01	1.39E+02	
RH	99	8.452+01	1.322+01	9.775+01	
TC	99H	2.59E+02	2.21E+00	2,61E+02	

Bronconstantes dosisequivalenten h(0,07) en h(10)

Bos et al. Inleiding tot de Stralingshygiëne, appendix F

Nuclide	h(0,07)	h(10)	Ratio h(0,07)/h(10)
	(µSv/h per MBg op	(µSv/h per MBg op	gecorrigeerd naar
	10 cm)	1 m)	afstand
¹⁸ F	2000	0.166	120
^{99m} Tc	300	0.023	130


N. Petoussi et al. GSF-Bericht 7/93, appendix A1

Nuclide	h(0,07)	h(0,07)	h(0,07)	h(10)	h(10)	h(10)
	t.g.v. elektronen (µSv/h per MBg op 10 cm)	t.g.v. fotonen (µSv/h per MBg op 10 cm)	totaal (uSv/h per MBg op 10 cm)	t.g.v. elektronen (µSv/h per MBg op 1 m)	t.g.v. fotonen (μSv/h per MBg op 1 m)	totaal (µSv/h per MBg op 1 m)
18 _F	1660	16	1676	-	0.160	0.160
^{99m} Tc	259	2	261	-	0.022	0.022

99% bijdrage elektronen

¹⁸F: bijdrage positronen aan h(0,07)

9-FLUORINE-18

HALFLIFE = 109.77 MINUTES 13-DEC-78 DECAY MODE(S): EC, β^+

RADIATION β' 1 γ±	y(i) (Bq-s) ⁻¹ 1.00E 00 2.00E 00	E(i) (MeV) 2.498E-01* 5.110E-01	y(i)×E(i) 2.50E-01 1.02E 00
LISTED X, γ AND LISTED β , ce AND LISTED RADIATION	Auger RADIA		1.02E 00 2.50E-01 1.27E 00

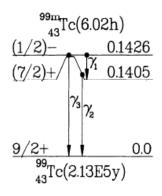
* AVERAGE ENERGY (MeV)
OXYGEN-18 DAUGHTER IS STABLE.

Handbook Delacroix et al. 2002

Fluorine - 18

Half life: 1.83 hours

Specific activity: 3.52E+18 Bq.g⁻¹


	Main emissions (keV)											
	Gamm	a or X	Beta (Emax)	Elect	rons	Alpha					
	E	%	Е	%	Е	%	Е	%				
E1	511	194	634	97	1	3						
E2												
E3												
% omitted		0		0		0						

99mTc: bijdrage elektronen aan h(0,07)

43-TECHNETIUM-99M

HALFLIFE = 6.02 F DECAY MODE(S): I'			29-MAR-78
	y(i)	E(i)	
RADIATION	$(Bq-s)^{-1}$	(MeV)	$y(i) \times B(i)$
ce-M, y 1	9.14E-01	1.749E-03*	1.60E-03
ce-N+, y 1	7.57E-02	2.174E-03*	1.65E-04
γ 2	8.89E-01	1.405E-01	1.25E-01
ce-K, y 2	8.79E-02	1.194E-01	
ce-L ₁ , y 2	9.67E-03	1.374E-01	1.33E-03
ce-L ₂ , γ 2	6.10E-04	1.377E-01	8.40E-05
ce-L ₂ , γ 2	3.01E-04	1.378E-01	4.15E-06
ce-M, y 2	1.92E-03	1.400E-01*	2.70E-04
ce-N+, y 2	3.71E-04	1.405E-01*	5.21E-05
ce-K, y 3	6.91E-03	1.216E-01	8.41E-04
ce-L ₁ , γ 3	1.17E-03	1.396E-01	1.63E-04
ce-L ₂ , γ 3	2.43E-04	1.399E-01	3.39E-05
ce-L ₂ , γ 3	7.40E-04	1.400E-01	1.04E-04
ce-M, γ 3	4.19E-04	1.422E-01*	5.97E-05
Ka, X-ray	4.03R-02	1.837E-02	7.39E-04
	2.12E-02	1.825E - 02	3.86E-04
Kβ ₁ X-ray	6.88E-03	2.062E-02	1.42E-04
Auger-KLL	1.45E-02	1.535E-02*	2.23E-04
Auger-KLX	5.76E-03	1.777E-02*	1.02E-04
	7.10E-02	2.053E~03*	1.46E-04
Auger-LMX	3.05E-02	2.468E-03*	7.53E-05
Auger-MXY	1.11E 00	4.090E-04*	4.54E-04
LISTED X, 7 AND			1.26E-01
OMITTED X, \(\gamma \) AN			1.58E-04
LISTED β, ce AND	Auger RADIAT	TONS	1.62E-02

OMITTED RADIATIONS**

* AVERAGE ENERGY (MeV)

LISTED RADIATIONS

OMITTED β, ce AND Auger RADIATIONS**

Handbook Delacroix et al. 2002

Technetium - 99m

Half life: 6.0 hours

Specific activity: 1.95E+17 Bq.g⁻¹

	Main emissions (keV)												
	Gamm	a or X	Beta (Emax)	Electr	ons	Alpha						
	E %		Е	%	E	%	E	%					
E1	18	6			120	9							
E2	21	1			138	1							
E3	141	89											
% omitted		1				1							

Conversie elektronen uit K- en L-schil

1.42E-01

1.96E-04

EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO Zy(i)×E(i) IN ITS CATEGORY. TECHNETIUM-99 DAUGHTER IS RADIOACTIVE.

^{99m}Tc: bijdrage elektronen aan h(0,07)

Table 1: Dose equivalent at 0.007 cm depth at the main axis of the ICRU sphere, H'(0.07), from point sources of monoenergetic photons and electrons at distance of 10 cm from the surface of the sphere

Energy emitted	Dose per fluence due	Dose per emitted	Dose per fluence due	Dose per emitted	10% elektronen 120 -138 keV
MeV	to electrons Sv.cm²	electron Sv	to photons Sv.cm²	photon Sv	1 MBq/uur:
					3600*10 ⁶ desintegraties
0.010			0.72E-11	0.57E-14	
0.015			0.31E-11	0.25E-14	•
0.020			0.18E-11	0.14E-14	\rightarrow
0.025			0.12E-11	0.92E-15	
0.030			0.84E-12	0.67E-15	
0.040			0.55E-12	0.44E-15	3600*10 ⁶ *0.78*10 ⁻¹² *0.1=
0.050			0.43E-12	0.34E-15	
0.060			0.39E-12	0.31E-15	280*10 ⁻⁶ =280 uSv
0.070			0.41E-12	0.32E-15	250 11917
0.080	0.40E-14	0.32E-17	0.42E-12	0.33E-15	~259 uSv
0.090	0.22E-10	0.18E-13			
0.100	0.19E-09	0.15E-12	0.50E-12	0.40E-15	
0.125	0.98E-09	0.78E-12			

Excelfile berekening extremiteitendoses

		1				1							
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Radiofarma con	gem. activiteit	bron constante h(0,07)	tijdsduur handeling	aantal handeling en per jaar	dikte Pb afschermi ng bron	halvering s-dikte in Pb	afstand tot bron	aantal HVL- dikten Pb	transmis sie T	dosis- tempo	Index dosis- tempo (dosiste mpo/ref_ dosis 1)	jaardosis per handeling	Index jaardosis (jaardosis / ref_dosis 2)
	(MBq)	(µSv/h per MBq op 10 cm)		(#ʃaar)	[mm]	[mm]	[cm]	[#HVL- dikten]		(mSv/h)		(mSv/jaar)	
F-18-FDG optrekken met pincet	450	2000	0.5	1000	20	6	20	3.3	0.10	2.23E+01	89.3	186.0	7.4
F-18-FDG optrekken zonder pincet	450	2000	0.4	1000	20	6	7.5	3.3	0.10	1.59E+02	635.0	1058.3	42.3

Halveringsdikte bij afscherming

NCS model: transmissie T berekend volgens:

$$T = (0.5)$$
 dikte afscherming/halveringsdikte

NB: Formule geldig voor gammastraling
 Positronen en elektronen hebben beperkte dracht:

$$R = 0.5xE/\rho \qquad \text{E energie in MeV} \\ \rho \text{ dichtheid afschermingsmateriaal (g/cm}^3)$$

 Impliciet stelt het model de verzwakking van betastraling gelijk aan die van gammastraling

Afscherming (handbook Delacroix)

18**F**

99m**Tc**

SHIELDING (mm)			
Betas and electrons			
(Total absorption)			
Glass 0.9			
Plastic	1.7		
Gamma and X rays (half and tenth value thickness)			
(half a	nd tenth v	-	
(half a	nd tenth v	-	
(half a	nd tenth va hickness)	alue	

SHIELDING (mm)			
Betas and electrons			
(Total absorption)			
Glass 0.2			
Plastic 0.3			
Gamma and X rays (half and tenth value thickness)			
(half a	nd tenth v	- 1	
(half a	nd tenth v	- 1	
(half a	nd tenth v	alue	

Voldoende afscherming

Bij voldoende afscherming: alleen gammastraling

Dan alleen fotoncomponent van h(0,07) of 100xh(10) te gebruiken in NCS-model

- → factor 120 lager bij ¹⁸F
- → factor 130 lager bij ^{99m}Tc

Maar..... Niet altijd wordt alle betastraling weggevangen

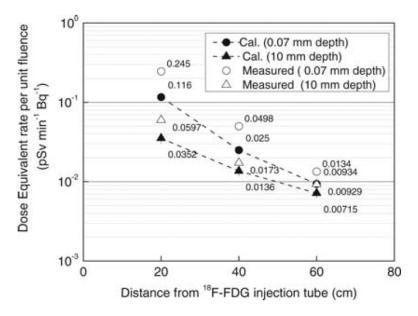
CALCULATION OF PERSONAL DOSE EQUIVALENT FOR POSITRON-EMITTING RADIONUCLIDES USING MONTE CARLO CODE EGS5

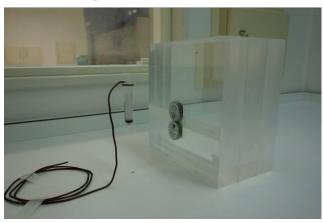
T. Kato^{1,5}, K. Aoki¹, S. Yokoyama^{1,*}, K. Ejiri¹, K. Minami¹, H. Yashima², A. Taniguchi², T. Nakamura³ and H. Hirayama⁴

Oppervlakte dosis neemt meer toe op korte afstand tot injectiespuit met ¹⁸F dan volgens kwadratenwet:

Factor totale dosis/dosis gammastraling:

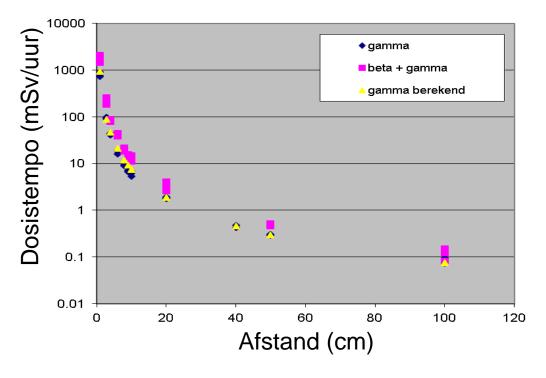
1	op 100 cm
1.3	op 60 cm
1.8	op 40 cm
3.3	op 20 cm

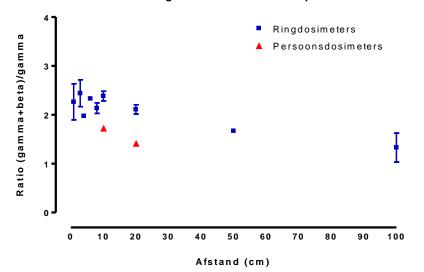



Figure 5. Dose equivalent rate per unit activity (pSv min⁻¹ Bq⁻¹) at distances of 20, 40 and 60 cm from the ¹⁸F-FDG injection tube.

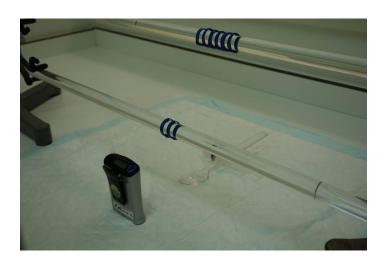
Uitgevoerde stralingsmetingen

Verschillende afstanden tot injectiespuit met ¹⁸F



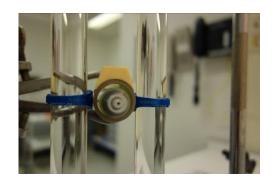


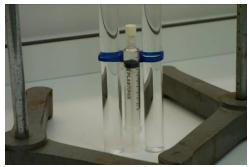
Resultaten ¹⁸F



18F onafgeschermde 10 ml spuit

Stralingsmetingen aan open bron ¹⁸F




Tabel 4.4.5 Berekende en gemeten doses omgerekend naar mSy/uur bij ¹⁸Fmet een gemiddelde activiteit van 450 MBq voor de beschreven opstelling en op dezelfde afstand van een onafgeschermde spuit.

130 0000	un 450 mbg 1001 de Beschieven opstelling en op dezende distand van een ondigeschermae spart.			
	Berekende dosis (γ)	Gemeten dosis (γ)	Gemeten dosis (gamma + beta)	Ratio totaal/gamma
Open bron	7.47	30.66 – 35.63	256.09 – 293.25	8.0 – 8.4
(x = 10 cm)		gem. 32.81	gem. 269.21	gem. 8.1
Onafgeschermde	7.47	5.26 – 6.56	13.50 – 14.69	2.2 – 2.6
spuit (x = 10 cm)		gem. 6.02	gem. 14.27	gem. 2.4
Open bron	1.87	7.17 – 8.96	61.68 – 65.69	6.9 – 8.6
(x=20 cm)		gem. 8.00	gem. 63.02	gem. 7.9
Onafgeschermde	1.87	1.78 – 1.94	3.56 – 4.07	2.0 - 2.3
spuit (x = 20 cm)		gem. 1.84	gem. 3.88	gem. 2.1

Stralingsmetingen aan 99mTc

Tabel 4.5.1 Berekende en gemeten doses omgerekend naar mSy/uur bij ⁹⁹mTc met een gemiddelde activiteit van 450 MBg voor de beschreven opstellingen. De waarden in rood zijn gebaseerd op dosismetingen rond de detectielimiet en daarom onbetrouwbaar.

	Berekende dosis (γ)	Gemeten dosis (γ)	Gemeten dosis (gamma + beta)	Ratio totaal/gamma
Direct op onafgeschermde 10-ml spuit (x = 0.9 cm)	127.78	89.95– 122.23 gem. 106.14	111.29 – 145.16 gem. 124.72	1.1 – 1.2 gem. 1.2
Op 2 cm afstand van onafgeschermde spuit (x = 2.8 cm)	13.20	11.72 – 13.89 gem. 12.51	12.35 – 15.53 gem. 13.707	0.9 – 1.3 gem. 1.1
10-ml spuit in wolfraam huls (x = 1.1 cm)	4.39	0.05 – 0.07 gem. 0.07	-0.04 – 0.22 gem. 0.13	-0.8 – 3.2 gem. 1.8

Resultaten metingen

Resultaten experimenten:

¹⁸F: dosis totaal/dosis gamma <3

^{99m}Tc: dosis totaal/dosis gamma < 1.5

 Dosis totaal/dosis gamma wordt hoger naarmate afstand tot bron korter wordt.

Aanpassing model

 Stap 1: Gebruik model voor dosis ten gevolge van alleen de gammastraling → 100xh(10) in plaats van h(0,07)

Stap 2:

vermenigvuldig met maximale ratio D_{totaal}/D_{gamma}

¹⁸F: x3

^{99m}Tc: x1.5

Niet afstandsafhankelijk om berekening eenvoudig te houden.

