RIAS-NG: aandachtspunten bij het berekenen van extremiteitendoses

Marinette van der Graaf, perifere stage in Rijnstate

Begeleiders: Bart Klein Rudi Hoekema

RIAS-NG: Wettelijke verplichting

Besluit Stralingsbescherming, artikel 10:
'de ondernemer zorgt ervoor dat door of onder toezicht van een deskundige, [] de plannen voor handelingen voorafgaand aan de uitvoering ervan kritisch worden bestudeerd, de risico's ervan geïnventariseerd en geëvalueerd en toestemming verleend, voordat met de handeling wordt aangevangen.'

- Risico Inventarisatie en Analyse Stralingshygiëne - Nucleaïre geneeskunde

Rijnstate

This partial RIAS has been downloaded on 19 Apr 2024

Aanbevelingen Nederlandse Commissie Stralingsdosimetrie (NCS)

- http://radiationdosimetry.org/documents/blootstelling-ng

Schatting opgelopen dosis bij ongewenste blootstelling

Spreadsheets en hulptabellen voor het schatten van de blootstelling aan diverse radioactieve stoffen.

FLES

Hulptabellen - Download
uitwendige blootstelling regulier - Download
uitwendige blootstelling regulier extremiteiten - Download

Uitwendige blootstelling incidenteel - Download
Uitwendige blootstelling incidenteel extremiteiten - Download
Uitwendige blootstelling F-18 FDG - Download
Uitwendige blootstelling I-131 therapie - Download
Inwendige besmetting - Download
RIAS NG
see all files
Aanbevelingen risicoanalyse en -evaluatie
voor Nucleair Geneeskundige verrichtingen
in ziekenhuizen
RIAS NG

+ More about and download

Schatting opgelopen dosis bij ongewenste blootstelling
Voorzien, onbedoelde gebeurtenissen bij
Nucleaire Geneeskunde

+ More about and download

Excelfile berekening extremiteitendoses

1	2	3	4	5	6	7	8	9	10	11	12	13	14
Radiofarma con	gern. activiteit	bron constante $h(0,07)$	tijdsduur handeling		dikte Pb afschermi ng bron	haluering s-dikte in Pb	afstand tot bron	aantal HVLdikten Pb	transmis sie T	dosistempo	Index dosistempo (dosiste mpo/ref_ dosis 1)		Index jaardosis (jaardosis / ref_dosis 2)
	(MBq)	(μ Su/h per MBq op 10 cm)	(min)	(${ }_{\text {Hj}}$ jaar)	[mm]	[mm]	[cm]	[\# HVLdikten]		(mSuh)		(mSujaar)	
F-18-FDG optrekken met pincet	450	2000	0.5	1000	20	6	20	3.3	0.10	$2.23 \mathrm{E}+01$	89.3	186.0	7.4
F-18-FDG optrekken zonder pincet	450	2000	0.4	1000	20	6	7.5	3.3	0.10	$1.59 \mathrm{E}+02$	635.0	1058.3	42.3

Excelfile berekening extremiteitendoses

Bronconstantes dosisequivalentempo's $h(0,07)$ en $h(10)$

Bos et al. Inleiding tot de Stralingshygiëne, appendix F

Nuclide	$\mathrm{h}(0,07)$ $(\mu S v / h$ per MBq op $10 \mathrm{~cm})$	$\mathrm{h}(10)$ $(\mu S v / \mathrm{h} \mathrm{per} \mathrm{MBq} \mathrm{op}$ $1 \mathrm{~m})$	Ratio h(0,07)/h(10) gecorrigeerd naar afstand
${ }^{18} \mathrm{~F}$	2000	0.166	120
${ }^{99 \mathrm{~m} \mathrm{Tc}}$	300	0.023	130

$h(0,07)$
Ontleend aan \mathbb{N}. Petoussi, et al. dose distributions in the ICRU sphere for monoenergetic photons and electrons andiforea. 800 radionuclides, GSF-Bericht 7/93, 1993
h(10)
Ontloend ann A.S. Keverling Buisman, Handboek radionucliden en indien daar niet vermeld aan N. Petoussi et al.

This partial RIAS has been down/oaded on 19 Apr 2024
Dose distributions in the ICRU sphere for
monoenergetic photons and electrons and for
ca. 800 radionuclides

Appendix

Table A1

Rijnstate

Bronconstantes dosisequivalenten $h(0,07)$ en $h(10)$

Bos et al. Inleiding tot de Stralingshygiëne, appendix F

Nuclide	$h(0,07)$ $(\mu S w / h$ per MBg op $10 \mathrm{~cm})$	$\mathrm{h}(10)$ $(\mu S v / h$ per MBg op $1 \mathrm{~m})$	Ratio $\mathrm{h}(0,07) / \mathrm{h}(10)$ gecorrigeerd naar afstand
${ }^{18} \mathrm{~F}$	2000	0.166	120
$9 \mathrm{~m}_{\mathrm{mc}}$	300	0.023	130

N. Petoussi et al. GSF-Bericht 7/93, appendix A1

Nuclide	h(0,07) t.g.v. elektronen ($\mu S v /$ h per MBg op 10 cm)	h(0,07) t.g.v. fotonen ($\mu S \mathrm{~S} / \mathrm{/h}$ per MBq op 10 cm)	$h(0,07)$ totaal ($\mu \mathrm{S} w / \mathrm{h}$ per MBg op 10 cm)	$h(10)$ t.g.v. elektronen ($\mu \mathrm{S}, \mathrm{w} / \mathrm{h}$ per MBq op 1 m)	$h(10)$ t.g.v. fotonen ($\mu \mathrm{S} v / \mathrm{h}$ per MBq op 1 m)	$h(10)$ totaal ($\mu \mathrm{Sv} / \mathrm{h}$ per MBg op 1 m)
${ }^{18} \mathrm{~F}$	1660	16	1676	-	0.160	0.160
${ }^{99 \mathrm{mT}} \mathrm{C}$	259	2	261	-	0.022	0.022

99\% bijdrage elektronen
Factor 100, afstand!

${ }^{18}$ F: bijdrage positronen aan $h(0,07)$

9-FLUORINE-18

HALFLIFE $=109.77$ MINUTES $\operatorname{DECAY} \operatorname{MODE}(\mathrm{S}): E C, \beta^{+}$

LISTED X, γ AND $\gamma \pm$ RADIATIONS LISTED β, ce AND Auger RADIATIONS LISTED RADIATIONS

13-DEC-78
$y(i) \times E(i)$ $2.50 \mathrm{E}-01$ 1.02 E 00
1.02E 00 $2.50 \mathrm{E}-01$ 1.27E 00

Handbook Delacroix et al. 2002
Fluorine - 18

positronen

99 mTc bijdrage elektronen aan $\mathrm{h}(0,07)$

43-TECHNETIUM-99M

HALCAY MODES
S): IT

Radiation	$\underset{(\mathrm{Ba}-\mathrm{a})^{-1}}{\mathrm{y}(\mathrm{i})}$	$\mathrm{E}(\mathrm{i})$	y(i) \times E(i)
ce-M, ${ }^{\text {¢ }}$ - 1	$9.14 \mathrm{E}-01$	$\frac{1.749 \mathrm{E}-03}{}$.	1.60E-03
ce- N^{+}, $\mathrm{y}^{\text {¢ }} 1$	7.57E-02	$2.1748-03 *$	$1.65 \mathrm{E}-04$
$\gamma 2$	$8.89 \mathrm{E}-01$	$1.405 \mathrm{E}-01$	$1.25 \mathrm{E}-01$
ce-K, γ^{2}	$8.79 \mathrm{E}-02$	$1.194 \mathrm{E}-01$	$1.05 \mathrm{E}-02$
ce-L. L_{4}, ${ }^{2}$	9.67E-08	$1.374 \mathrm{E}-01$	$1.33 \mathrm{E}-03$
ce- $L_{2}, \gamma 2$	$6.10 \mathrm{E}-04$	$1.377 \mathrm{~B}-01$	8.40E-05
ce-L3, ${ }^{\text {r }} 2$	$3.01 \mathrm{E}-04$	$1.378 \mathrm{E}-01$	$4.15 \mathrm{E}-06$
ce-M, > 2	1.92E-03	$1.400 \mathrm{E}-01^{*}$	$2.70 \mathrm{E}-04$
ce- $\mathrm{N}^{+}, \gamma^{2}$	$3.71 \mathrm{E}-04$	$1.405 \mathrm{E}-01^{*}$	$5.21 \mathrm{E}-05$
ce-K, $\gamma 3$	$6.91 \mathrm{E}-03$	1.26E-01	$8.41 \mathrm{E}-04$
ce-L $\mathrm{L}_{2}, \gamma 3$	$1.17 \mathrm{~B}-03$	$1.396 \mathrm{E}-01$	$1.63 \mathrm{E}-04$
ce-L2, y 3	$243 \mathrm{~B}-04$	$1.399 \mathrm{E}-01$	$3.39 \mathrm{E}-05$
ce-L L_{2}, γ^{3}	$7.40 \mathrm{~B}-04$	$1.400 \mathrm{E}-01$	$1.04 \mathrm{E}-04$
ce-M, γ^{3}	4.19E-04	$1.422 \mathrm{E}-01^{*}$	$5.97 \mathrm{E}-06$
$\mathrm{K} a_{1} \mathrm{X}^{\text {X }}$ - may^{\prime}	$4.93 \mathrm{R}-02$	$1.827 \mathrm{E}-02$	$7.39 \mathrm{E}-04$
$\mathrm{K} a_{2} \mathrm{X}$-ray	$212 \mathrm{~B}-02$	$1.825 \mathrm{E}-02$	$3.86 \mathrm{E}-04$
$\mathrm{K} \beta_{1} \mathrm{X}$-ray	$6888 \mathrm{~B}-03$	$2.062 \mathrm{E}-02$	$1.22 \mathrm{E}-$
Auger-KLL	1.45B-02	1.535E-02*	2.2
Auger-KLX	6.76E-03	$1.777 \mathrm{E}-02{ }^{*}$	$1.02 \mathrm{~B}-04$
Auger-LMM	7.108-02	$2.053 \mathrm{E}-0 \mathrm{Ma}^{+}$	1468 -04
Auger-LMX	3.05B-02	$2.468 \mathrm{E}-03^{*}$	$7.53 \mathrm{~B}-05$
Auger-MXY	1.11 E 00	4.090E-04*	$4.54 \mathrm{~B}-04$
LISTED X, γ AND $\gamma \pm$ RADIATIONS $1.26 \mathrm{E}-01$			
OMITTED X, γ AND $\gamma \pm$ RADIATIONS** 1.			
LISTED β, ce AND Auser Radiations $\quad 1.62 \mathrm{E}-02$			
OMITTED β, ce AND Auger RADIATIONS** 3.0			
OMITTED RADIATIONS**			$1.96 \mathrm{E}-$

$\times \mathrm{E}()^{2}$ 50E-08 $65 \mathrm{E}-04$
$25 \mathrm{E}-01$ 25E-01 .13E-03 40E-05 $.15 \mathrm{E}-06$ $.70 \mathrm{E}-04$
$.21 \mathrm{E}-05$
.25 $5.21 \mathrm{E}-05$
$8.41 \mathrm{E}-04$ $41 \mathrm{E}-04$

$63 \mathrm{E}-04$ | $63 \mathrm{E}-04$ |
| :--- |
| $39 \mathrm{E}-06$ | | $394 \mathrm{E}-06$ |
| :--- | | $.97 \mathrm{E}-06$ |
| :--- | $.97 \mathrm{E}-06$

$39 \mathrm{E}-04$
$36 \mathrm{E}-04$ $86 \mathrm{E}-04$ $42 \mathrm{~B}-04$

$23 \mathrm{~B}-04$ | $.23 \mathrm{~B}-04$ |
| :--- |
| $.02 \mathrm{~B}-04$ | $.02 \mathrm{~B}-04$

$46 \mathrm{~B}-04$ ${ }^{1} 7.53 \mathrm{E}-04$.54E-04 26B-01 59E-04 .82E-02 $1.42 \mathrm{E}-01$
$1.96 \mathrm{E}-04$

Handbook Delacroix et al. 2002
Technetium -99m

Half life:	6.0 hours
Specific activity:	1.95E+17 Bq.g ${ }^{-1}$

Main emissions (keV)											
	Gamma or X		Beta (Emax)	Electrons	Alpha						
	E	$\%$	E	$\%$	E	$\%$					
E											
E1	18	6		120	9						
E2	21	1		138	1						
E3	141	89									
\% omitted	1									1	

Conversie elektronen uit K- en L-schil

AVERAGE ENERGY (MeV)

- EACH OMITTED TRANSITION CONTRIBUTES <0.100\% TO Ey(i)×E(i) IN ITS CATEGORY.
ECHNETIUM- 99 DAUGHTER IS RADIOACTIVE

${ }^{99 m}$ Tc: bijdrage elektronen aan $\mathbf{h}(0,07)$

Table 1: Dose equivalent at 0.007 cm depth at the main axis of the ICRU sphere, $\mathrm{H}^{\prime}(0.07)$, from point sources of monoenergetic photons and electrons at distance of 10 cm from the surface of the sphere

Energy emitted	Dose per fluence due to electrons Sv.cm	Dose per emitted electron Sv	Dose per lluence due to photons Sv.cm	Dose per ennitted photon Sv
			$0.72 \mathrm{E}-11$	$0.57 \mathrm{E}-14$
0.010			$0.31 \mathrm{E}-11$	$0.25 \mathrm{E}-14$
0.015			$0.18 \mathrm{E}-11$	$0.14 \mathrm{E}-14$
0.020			$0.84 \mathrm{E}-11$	$0.92 \mathrm{E}-15$
0.025			$0.55 \mathrm{E}-12$	$0.44 \mathrm{E}-15$
0.030			$0.43 \mathrm{E}-12$	$0.34 \mathrm{E}-15$
0.040			$0.41 \mathrm{E}-12$	$0.31 \mathrm{E}-15$
0.050			$0.32 \mathrm{E}-15$	
0.060				
0.070				
0.080	$0.40 \mathrm{E}-14$	$0.32 \mathrm{E}-17$	$0.42 \mathrm{E}-12$	$0.33 \mathrm{E}-15$
0.090	$0.22 \mathrm{E}-10$	$0.18 \mathrm{E}-13$		
0100	$0.19 \mathrm{E}-09$	$0.15 \mathrm{E}-12$	$0.50 \mathrm{E}-12$	$0.40 \mathrm{E}-15$
0.125	$0.98 \mathrm{E}-09$	$0.78 \mathrm{E}-12$		

10% elektronen $120-138 \mathrm{keV}$
$1 \mathrm{MBq} / \mathrm{uur}$: $3600^{*} 10^{6}$ desintegraties
\rightarrow
$3600^{*} 10^{6 *} 0.78^{*} 10^{-12 *} 0.1=$
$280^{*} 10^{-6}=280 \mathrm{uSv}$
~259 uSv

Excelfile berekening extremiteitendoses

Halveringsdikte bij afscherming

- NCS model: transmissie T berekend volgens:
$\mathrm{T}=(0.5)$ dikte afscherming/halveringsdikte
- NB: Formule geldig voor gammastraling Positronen en elektronen hebben beperkte dracht:
$R=0.5 \times E / \rho \quad E$ energie in $M e V$
ρ dichtheid afschermingsmateriaal ($\mathrm{g} / \mathrm{cm}^{3}$)
- Impliciet stelt het model de verzwakking van betastraling gelijk aan die van gammastraling

Afscherming (handbook Delacroix)

18F

SHIELDING (mm)			
Betas and electrons (Total absorption)			
Glass	0.9		
Plastic	1.7		
Gamma and X rays (half and tenth value thickness)			
$\|c\| 1 / 2$			$1 / 10$
Lead	6		

99mTc

SHIELDING (mm)		
Betas and electrons (Total absorption)		
Glass	0.2	
Plastic	0.3	
Gamma and \mathbf{X} rays (half and tenth value thickness)		
$\|c\| c\|c\|$		
Lead	<1	1
Steel	1	19

Voldoende afscherming

- Bij voldoende afscherming: alleen gammastraling

Dan alleen fotoncomponent van $h(0,07)$ of 100xh(10) te gebruiken in NCS-model
\rightarrow factor 120 lager bij ${ }^{18} \mathrm{~F}$
\rightarrow factor 130 lager bij ${ }^{99 m T c}$

Maar..... Niet altijd wordt alle betastraling weggevangen

CALCULATION OF PERSONAL DOSE EQUIVALENT FOR POSITRON-EMITTING RADIONUCLIDES USING MONTE CARLO CODE EGS5

T. Kato ${ }^{1,5}$, K. Aoki ${ }^{1}$, S. Yokoyama ${ }^{1, *}$, K. Ejiri ${ }^{1}$, K. Minami ${ }^{1}$, H. Yashima ${ }^{2}$, A. Taniguchi ${ }^{2}$, T. Nakamura ${ }^{3}$ and H. Hirayama ${ }^{4}$

Oppervlakte dosis neemt meer toe op korte afstand tot injectiespuit met ${ }^{18} \mathrm{~F}$ dan volgens kwadratenwet:

Factor totale dosis/dosis gammastraling:

1	op 100 cm
1.3	op 60 cm
1.8	op 40 cm
3.3	op 20 cm

Figure 5. Dose equivalent rate per unit activity (pSv $\min ^{-1} \mathrm{~Bq}^{-1}$) at distances of 20,40 and 60 cm from the ${ }^{18}$ F-FDG injection tube.

Uitgevoerde stralingsmetingen

- Verschillende afstanden tot injectiespuit met ${ }^{18} \mathrm{~F}$

18F teruggerekend naar mSv/uur bij 450 MBq
Resultaten ${ }^{18} \mathrm{~F}$

18 F
onafgeschermde 10 mlspuit

Stralingsmetingen aan open bron ${ }^{18}$ F

Tabel 4.4.5 Berekende en gemeten doses omgerekend naar $\mathrm{mSv} / \mathrm{uur}$ bij ${ }^{18}$ Fmet een gemiddelde activiteit van 450 MBq voor de beschreven opstelling en op dezelfde afstand van een onafgeschermde spuit.

	Berekende dosis (v)	Gemeten dosis (v)	Gemeten dosis (gamma + beta)	Ratio totaal/gamma
Open bron $(x=10 \mathrm{~cm})$	7.47	$30.66-35.63$ gem. 32.81	$256.09-293.25$ gem. 269.21	$8.0-8.4$ gem. 8.1
Onafgeschermde spuit $(x=10 \mathrm{~cm})$	7.47	$5.26-6.56$ gem. 6.02	$13.50-14.69$ gem. 14.27	$2.2-2.6$ gem. 2.4
Open bron $(x=20 \mathrm{~cm})$	1.87	$7.17-8.96$ gem. 8.00	$61.68-65.69$ gem. 63.02	$6.9-8.6$ gem. 7.9
Onafgeschermde spuit $(x=20 \mathrm{~cm})$	1.87	$1.78-1.94$ gem. 1.84	$3.56-4.07$ gem. 3.88	$2.0-2.3$ gem. 2.1

Stralingsmetingen aan ${ }^{99 m}$ Tc

Tabel 4.5.1 Berekende en gemeten doses omgerekend naar $\mathrm{msy} / \mathrm{uur}$ bij 99 mTc met een gemiddelde activiteit van 450 MBq voor de beschreven opstellingen. De waarden in rood zijn gebaseerd op dosismetingen rond de detectielimiet en daarom onbetrouwbaar.

	Berekende dosis (v)	Gemeten dosis (V)	Gemeten dosis (gamma + beta)	Ratio totaal/gamma
Direct op onafgeschermde $10-\mathrm{ml}$ spuit ($\mathrm{x}=0.9 \mathrm{~cm}$)	127.78	89.95-122.23 gem. 106.14	$\begin{gathered} 111.29-145.16 \\ \text { gem. } 124.72 \end{gathered}$	$1.1-1.2$ $\text { gem. } 1.2$
Op 2 cm afstand van onafgeschermde spuit ($\mathrm{x}=2.8 \mathrm{~cm}$)	13.20	$\begin{gathered} 11.72-13.89 \\ \text { gem. } \mathbf{1 2 . 5 1} \end{gathered}$	$\begin{aligned} & 12.35-15.53 \\ & \text { gem. } \mathbf{1 3 . 7 0 7} \end{aligned}$	$\begin{array}{r} 0.9-1.3 \\ \text { gem. } 1.1 \end{array}$
$10-\mathrm{ml}$ spuit in wolfraam huls ($x=1.1 \mathrm{~cm}$)	4.39	$\begin{gathered} 0.05-0.07 \\ \text { gem. } \mathbf{0 . 0 7} \end{gathered}$	$-0.04-0.22$ gem. 0.13	$-0.8-3.2$ gem. 1.8

Resultaten metingen

- Resultaten experimenten:

$$
\begin{array}{ll}
\text { 18F: } & \text { dosis totaal/dosis gamma }<3 \\
99 \mathrm{mTc}: & \text { dosis totaal/dosis gamma }<1.5
\end{array}
$$

- Dosis totaal/dosis gamma wordt hoger naarmate afstand tot bron korter wordt.

Rijnstate

Aanpassing model

- Stap 1:

Gebruik model voor dosis ten gevolge van alleen de gammastraling $\rightarrow 100 \times h(10)$ in plaats van $h(0,07)$

- Stap 2: vermenigvuldig met maximale ratio $D_{\text {totaal }} / D_{\text {gamma }}$ ${ }^{18} \mathrm{~F}$: $\quad \times 3$
${ }^{99 m} T \mathrm{C}$: $\quad \mathrm{x} 1.5$
Niet afstandsafhankelijk om berekening eenvoudig te houden.

