dosimetry in the (Dutch) Breast Cancer screening

Ruben van Engen

- Introduction
- Breast dosimetry model
- Implementation in Breast Cancer Screening
- Quality control, limiting values
- Patient dosimetry
- Risk analysis

Introduction

- To understand the dosimetry model: chronological explanation
- Risk assessment:
 - Absorbed energy in glandular tissue
- Mean Glandular Dose (MGD) cannot be measured directly
- Entrance Surface Air Kerma is measured
- Using a model of the breast the MGD is estimated for a population

Hammerstein (1979)

Breast model (Hammerstein 1979)

- 5 mm skin (fatty tissue)
- Core: homogeneous mixture of glandular and fatty tissue
- 50/50% glandular/fatty tissue

CC projection

Side view

Dance (1990)

Configuration:

- Hammerstein breast model
- Compression paddle present
- Bucky table present
- Mo/Mo target/filter combination

Dance (1990)

$MGD = K_{air} \cdot g$ g-factor: fraction of energy absorbed in glandular tissue of breast K_{air} : Entrance Surface Air Kerma

g-factor: determined using Monte Carlo simulations → tabulated against HVL

(IPSM Report 59 1989, European Protocol 1996)

Dance (1990)

g-factor							
PMMA Thickness		HVL (mm Al)					
(mm)	0.3	0.35	0.4	0.45	0.5	0.55	0.6
2	0.378	0.421	0.460	0.496	0.529	0.559	0.575
3	0.261	0.294	0.326	0.357	0.388	0.419	0.448
4	0.183	0.208	0.232	0.258	0.285	0.311	0.339
4.5	0.155	0.177	0.198	0.220	0.245	0.272	0.295
5	0.135	0.154	0.172	0.192	0.214	0.236	0.261
6	0.106	0.121	0.136	0.152	0.166	0.189	0.210
7	0.086	0.098	0.111	0.123	0.136	0.154	0.172
8	0.074	0.085	0.096	0.106	0.117	0.133	0.149

Developments since 1990:

- Additional X-ray spectra are used:
 - Mo/Rh, Rh/Rh
 - The g-factor was based on Mo/Mo

- Correction on g-factor for other X-ray spectra
 - -> s-factor

• Breast composition assumption (50% glandularity) is a simplification

- -> Introduction of c-factor,
- correction of g factor for differences in breast composition
- (other than 50% glandular/50% fatty tissue)
- discussion in USA:
- "the myth of the 50-50 breast"

 $MGD = K_{air} \cdot g \cdot c \cdot s$

g-factor: fraction of energy absorbed in glandular tissue

K_{air} entrance Surface Air Kerma c-factor: correction for breast composition

s-factor: correction X-ray spectrum

c-factor								
PMMA thickness		HVL [mm Al]						
[cm]		0.30	0.35	0.40	0.45	0.50	0.55	0.60
2.0		0.889	0.895	0.903	0.908	0.913	0.917	0.921
3.0		0.940	0.943	0.945	0.946	0.950	0.952	0.953
4.0		1.043	1.041	1.041	1.039	1.038	1.036	1.035
5.0		1.164	1.160	1.151	1.150	1.144	1.139	1.134
6.0		1.254	1.245	1.236	1.231	1.226	1.217	1.208
7.0		1.299	1.292	1.282	1.275	1.270	1.260	1.249
8.0		1.307	1.299	1.291	1.288	1.283	1.273	1.263

s-factor				
Mo/Mo	1.000			
Mo/Rh	1.017			
Rh/Rh	1.061			
W/Rh	1.042			

- Digital mammography has been introduced
- New target/filter combinations:

- W/Ag (thickness between 50 -75 µm)

- W/AI (0.5 mm thickness)

• W/Ag target/filter combinations:

Target	Filter	kV range (kV)	s-factor using Boone spectra	Maximum error %
W	50 µm Ag	25-40	1.063	2.6
W	55 µm Ag	25-40	1.054	2.6
W	60 µm Ag	25-40	1.048	2.9
W	65 µm Ag	25-40	1.043	3.1
W	75 μm Ag	25-40	1.037	4.1
W	50-75 µm Ag	25-40	1.042	4.6

One s-factor for W/Ag

- W target combined with 0.5 mm Al filter:
- Broad X-ray spectrum

 It is not possible to use one s-factor for W/ 0.5 mm Al

PMMA thickness (mm)	Equiv breast thickness (mm)	s-factor
20	21	1.075
30	32	1.104
40	45	1.134
45	53	1.149
50	60	1.160
60	75	1.181
70	90	1.198
80	103	1.208

1990: Scatter free

• 2009:

 2000: dose meter in contact with compression paddle

Calculation geometry	Relative value of incident air kerma
Chamber in contact with compression paddle	1.000
Compression paddle raised 50 mm above chamber	0.968
Scatter free measurement	0.929

 2012: EU Guidelines: measuring device in contact with paddle

European Guidelines 2012

Position dosemeter: on bucky in contact with compression paddle

European Guidelines 2012

S-factor for W/0.7 mm Al

PMMA thickness (mm)	Equiv breast thickness (mm)	s-factor
20	21	1.052
30	32	1.060
40	45	1.076
50	60	1.087
60	75	1.105
70	90	1.121
80	103	1.129

 Additional c- and g-factors for HVL up to 0.8 mm Al

Implementation of Dance model

- European Guidelines,
 Fourth edition (2006),
 Supplement (2012)
- MGD calculated in QC
- Limits on MGD and image quality
- Distinction between:
 - acceptable (limit)
 - achievable values

European guidelines for quality assurance in breast cancer screening and diagnosis

European Commission

Implementation of Dance model

PMMA thickness	Eq.Breast th.	Mean Glandular dose	
		acceptable	achievable level
[cm]	[cm]	[mGy]	[mGy]
2.0	2.1	< 1.0	< 0.6
3.0	3.2	< 1.5	< 1.0
4.0	4.5	< 2.0	< 1.6
4.5	5.3	< 2.5	< 2.0
5.0	6.0	< 3.0	< 2.4
6.0	7.5	< 4.5	< 3.6
7.0	9.0	< 6.5	< 5.1

- Limits derived from screen-film mammography
- Basic principle: digital should be equal or better

Implementation of Dance model

How have the limiting values been derived?

- For 5 cm PMMA existing limit on Entrance Kerma
- MGD calculated using a standard spectrum (appr. 3 mGy)
- Limits should be extended to other thicknesses
- Relationship between PMMA thickness and MGD in screen-film mammography determined
- Resulting curve scaled to 3 mGy

Dose level 2009

PMMA thickness	Equivalent breast thickness	MGD screen-film (2007)	MGD digital (2009)	Difference
(cm)	(cm)	(mGy)	(mGy)	(mGy)
2	2.1	0.36	0.76	0.40
3	3.2	0.57	1.10	0.53
4	4.5	1.02	1.50	0.48
5	6	1.69	1.66	-0.04
6	7.5	2.93	2.23	-0.70
7	9	4.81	2.12	-2.68

Note: Before introduction of W-target in digital mammography

Dose level 2012

PMMA Thickness	Equivalent breast thickness	MGD digital (2009)	MGD digital (2012)	Difference
(cm)	(cm)	(mGy)	(mGy)	(mGy)
2	2.1	0.76	0.57	-0.19
3	3.2	1.10	0.82	-0.28
4	4.5	1.50	1.15	-0.35
5	6	1.66	1.39	-0.27
6	7.5	2.23	1.80	-0.43
7	9	2.12	1.79	-0.33

In practice

In practice:

- Most DR systems: Using "achievable" dose level, "achievable" image quality is obtained
- Most CR systems: Using "acceptable" dose level, "acceptable" image quality is obtained

(comparison for single sided CR plates)

DRN

- CR systemen hebben meer dosis nodig om dezelfde kwaliteit te bereiken
- Onderscheid tussen dosis referentieniveau van DR en CR
- CR: DRN is "acceptable" waarde uit EU richtlijn
- DR: DRN is "achievable" waarde uit EU richtlijn
- Alleen 3, 5 en 7 cm in DRN

Patient dosimetry

Data from 4923 exposures

Patient dosimetry

- Some differences exist:
 - Breast model is not a real breast
 - Workings of Automatic Exposure Control

Risk assessment

- Patient dosimetry data is used for calculating the risk-benefit of mammography screening
- Latest data (Yaffe et al. 2010):

100000 women (MGD 3.7 mGy), screened annually (40 - 55 year) and biennially (55 - 74 year)

136 woman-years would be lost 10670 woman-years would be saved by early detection by screening.

Conclusion: "For the mammographic screening regimens considered that begin at age 40 years, this risk is small compared with the expected mortality reduction achievable through screening. The risk of radiationinduced breast cancer should not be a deterrent from mammographic screening of women over the age of 40 years. "

• Thank you for your attention