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Preface 

The Nederlandse Commissie voor Stralingsdosimetrie (NCS, Netherlands Commission on 

Radiation Dosimetry) was officially established on 3 September 1982 with the aim of 

promoting the appropriate use of dosimetry of ionizing radiation both for scientific research 

and practical applications. The NCS is chaired by a board of scientists, installed upon the 

suggestion of the supporting societies, including the Nederlandse Vereniging voor 

Radiotherapie en Oncologie (Netherlands Society for Radiotherapy and Oncology), the 

Nederlandse Vereniging voor Nucleaire Geneeskunde (Netherlands Society for Nuclear 

Medicine), the Nederlandse Vereniging voor Klinische Fysica (Netherlands Society for 

Clinical Physics), the Nederlandse Vereniging voor Radiobiologie (Netherlands Society for 

Radiobiology), the Nederlandse Vereniging voor Stralingshygiëne (Netherlands Society for 

Radiological Protection), the Nederlandse Vereniging voor Medische Beeldvorming en 

Radiotherapy (Netherlands Society for Medical Imaging and Radiotherapy), the Nederlandse 

Vereniging voor Radiologie (Netherlands Society for Radiology) and the Belgische 

Vereniging voor Ziekenhuisfysici/Société Belge des Physiciens des Hôpitaux (Belgian 

Hospital Physicists Association. 

To pursue its aims, the NCS accomplishes the following tasks: participation in dosimetry 

standardisation and promotion of dosimetry intercomparisons, drafting of dosimetry 

protocols, collection and evaluation of physical data related to dosimetry. Furthermore the 

commission shall maintain or establish links with national and international organisations 

concerned with ionizing radiation and promulgate information on new developments in the 

field of radiation dosimetry. 

 

Current members of the board of the NCS: 

 

S. Vynckier, chairman 

B.J.M. Heijmen, vice-chairman 

E. van Dijk, secretary 

J. Zoetelief, treasurer 

A.J.J. Bos 

A.A. Lammertsma 

J.M.Schut 

F.W. Wittkämper 

D. Zweers 
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User guide 

This report presents an overview of the literature for physicists in radiotherapy departments 

who intend to buy/use/customise a Monte Carlo treatment planning system for electron 

and/or photon therapy. The report focuses on commissioning, selection of treatments 

requiring Monte Carlo, variance reduction techniques, accelerator head modelling, patient 

modelling (conversion of CT Hounsfield units), hardware requirements and the required 

knowledge to operate an MCTP system. In addition an overview of existing Monte Carlo dose 

engines and MCTP systems is given. 

 

The report consists of three main parts.  

 

The first part provides insight in the Monte Carlo method for dose calculations. An overview 

of general purpose Monte Carlo codes, used in the field of electron and photon dosimetry, is 

given. An extensive description of modelling of electron and photon transport and the usage 

of cross sections is presented. 

 

The second part deals with MCTP specific topics such as CT conversion, linac head 

modelling, scoring, variance reduction, Monte Carlo based treatment planning (optimisation), 

and 4D planning. 

 

The third and final part focuses on practical aspects. It provides an overview of Monte Carlo 

dose engines used for Monte Carlo treatment planning, an overview of commercial MCTP 

systems, and guidelines on benchmarking of these systems (focussing on MC specific 

benchmarks).  
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Summary 

The accuracy of dose calculation engines used for treatment planning in radiotherapy 

has increased steadily, ranging from calculations based on measurements, to pencil 

beam algorithms and superposition/convolution algorithms. Currently, Monte Carlo 

dose calculation engines are implemented in commercial treatment planning software 

as it is believed that the Monte Carlo method can provide an accuracy within 2-3 %. It 

is important that clinical physicists have insight in these systems, when introducing 

them into the clinic. This report tackles this acute problem by providing extensive 

information on:  

 

• general purpose Monte Carlo codes for photon and electron dosimetry 

applications 

• modelling of particle transport 

• cross sections 

• MCTP (Monte Carlo Treatment Planning) specific issues such as linac 

modelling, CT conversion, variance reduction techniques, scoring grids 

• Recent developments such as 4D applications and MCTP optimisation 

 

 

An important question is whether the added value of MCTP is clinically relevant. 

To answer this question an extensive overview of the literature is provided. The main 

conclusion is that the MC method has important added value when compared to 

pencil beam algorithms. More information is needed when comparing MC to 

superposition/convolution algorithms, although the first experiments (comparing 

accurate Monte Carlo dose calculation engines to superposition/convolution 

algorithms) demonstrate that the MC method will become very important in clinical 

treatment planning.   

 

As the Monte Carlo method is, by its nature, very time consuming, a number of 

approximations have been included in commercial Monte Carlo dose calculation 

engines for treatment planning. This leads to a reduction in calculation time of several 
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orders of magnitude. The impact on the dosimetrical accuracy however is not well 

known yet. This report provides an overview of existing Monte Carlo dose calculation 

engines, focussing on applied approximations. An overview of commercial MCTP 

systems that are already available or are currently being developed is given. As 

benchmarking remains as important as for any other treatment planning system, a 

paragraph is devoted to quality control.  Commercial MCTP systems can be 

benchmarked by measurements but also by comparison with accurate Monte Carlo 

dose calculation engines containing only a few approximations. 
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Abbreviations 

3D  Three-Dimensional 
4D  Four-Dimensional 
AAPM  American Association of Physicists in Medicine 
ASCII   American Standard Code for Information Interchange 
BEAM  an EGS4/PRESTA or EGSnrc/PRESTAII Monte Carlo user code 
CERN   European Organization for Nuclear Research 
CSDA  Continuous Slowing Down Approximation 
CPU   Central Processing Unit  
CT  Computed Tomography 
CTV  Clinical Target Volume 
DOSXYZ an EGS4/PRESTA Monte Carlo user code 
DPM  Dose Planning Method (MC algorithm for photons and electrons) 
DVH  Dose-Volume Histogram 
EGS  Electron Gamma Shower (a Monte Carlo code) 
ENIAC   Electronic Numerical Integrator And Computer 
EPID   Electronic Portal Imaging Device  
EPL  Equivalent Path Length 
ESTRO  European Society for Therapeutic Radiology and Oncology 
ETRAN  Electron TRANsport (a Monte Carlo code) 
FORTRAN  FORmula TRANslation (programming language) 
FWHM  Full Width at Half Maximum 
GEANT  GEometry ANd Tracking (a Monte Carlo code) 
ICRU  International Commission on Radiation Units and Measurements 
IMRT  Intensity-Modulated Radiation Therapy 
ITS  Integrated Tiger Series (a Monte Carlo code package) 
KEK  National Laboratory for High Energy Physics (Japan) 
LANL  Los Alamos National Laboratory 
MC  Monte Carlo 
MCDOSE an EGS4/PRESTA Monte Carlo user code 
MCNP3  Monte Carlo Neutron Photon (a Monte Carlo code) 
MCNP4  Monte Carlo N-Particle (a Monte Carlo code) 
MCTP  Monte Carlo Treatment Planning 
MLC  Multi-Leaf Collimator 
MMC   Macro Monte Carlo (MC algorithm for electrons) 
MORTRAN Fortran pre-processor (used for EGS) 
MRI  Magnetic Resonance Imaging 
MU  Monitor Unit 
NIST  National Institute of Standards and Technology 
NCS  Netherlands Commission on Radiation Dosimetry 
NRC   National Research Council of Canada 
NTCP   Normal Tissue Complication Probability  
PB   Pencil Beam 
PC  Personal Computer 
PENELOPE PENetration and Energy LOss of Positron and Electrons (MC code) 
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PET  Positron Emission Tomography 
PRESTA Parameter Reduced Electron Stepping Algorithm 
PTV  Planning Target Volume 
RBE   RadioBiological Effectiveness 
QA  Quality Assurance 
SLAC  Stanford Linear Accelerator Center 
SPECT  Single Photon Emission Computed Tomography 
TPS  Treatment Planning System 
TRUS  TransRectal UltraSound 
TCP  Tumor Control Probability  
VISED  Visual Editor (graphical interface for MCNP) 
VMC  Voxel Monte Carlo (MC algorithm for electrons) 
VMC++  MC algorithm based on VMC and XVMC 
XVMC  MC algorithm for photons based on VMC 
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1 Introduction 

In the past decades, the sophistication of dose calculation models implemented 

in clinical radiotherapy treatment planning systems has gradually improved, together 

with available computing power in hospitals. This evolution, going from rather simple 

scatter- and inhomogeneity corrections to pencil beams and 

superposition/convolution models has resulted in continuous improvements in the 

accuracy of predicted patient doses. In superposition/convolution models, pre-

determined Monte Carlo results are used. Full Monte Carlo dose calculations would 

therefore seem the next logical step.       

For many years it has been realised that full Monte Carlo simulations of the 

radiotherapy dose delivery process should further improve calculation accuracy. Due 

to limitations in computing power, however, this was never a realistic option in a 

clinical setting. Recently, vendors of clinical treatment planning systems have 

nevertheless started to offer Monte Carlo dose calculations. However, available 

computing power may still not allow for full Monte Carlo simulations in clinical 

practice. Approximations and simplifications to speed up the calculations may 

therefore be necessary, possibly (partially) jeopardising the advantages of full Monte 

Carlo dose calculations. 

The aim of this NCS report is to provide potential users of a clinical treatment 

planning system with an introduction in the Monte Carlo technique. Apart from 

providing an explanation of fundamental and practical aspects specific to Monte 

Carlo treatment planning, recommendations (although limited) for potential users and 

vendors are included. This report only covers external photon and electron beam 

therapy using conventional linear accelerators. Brachytherapy, hadron therapy, 

tomotherapy, robotic radiotherapy, etc., are beyond the scope of this report. 
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Part I: Introduction to Monte Carlo 
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2 Monte Carlo for solving numerical problems 

2.1 Comparison with analytical and numerical approaches 

The main difference between the Monte Carlo technique on one hand and 

analytical and numerical approaches on the other is the use of a random number 

generator and a set of probability distributions to sample parameter values for 

calculating a possible solution to the problem for a single “case” or “event”. By 

simulating many “cases” or “events,” reliable average values can be obtained. Since 

the result is an average, it is associated with a standard deviation that expresses the 

uncertainty due to the fact that the simulated number of events is less than infinite. 

This source of uncertainty is not present when analytical methods are used. Of 

course, the answer obtained with analytical methods is still associated with an 

uncertainty, arising from the common sources such as uncertainties in the input 

parameters and possible systematic errors in the model. A possible disadvantage of 

analytical methods is that solutions may be difficult to obtain for complex problems. 

(Minor) changes in the relationship between parameters, or the introduction of a new 

parameter, may create a major problem in finding a new analytical solution.  

Numerical methods are generally less sensitive to such changes. If, for 

instance, a relationship changes, the numerical algorithm can stay the same, 

because it only uses the values of the function at certain points. In Appendix A, the 

example of calculating the area of a circle with radius 1 is used to demonstrate some 

differences between the different techniques. 

2.2 Monte Carlo dose calculations 

In a Monte Carlo dose calculation, the track of each individual ionizing particle 

(in radiotherapy generally photons and electrons) through the volume of interest is 

simulated. Along its way, the particle may interact with the matter through which it is 

passing, e.g. through Compton scattering (for photons) or Coulomb scattering (for 

electrons). Using a random number generator and probability distributions for the 

different types of interaction, the program samples the distance l  to the ‘next ’ 

interaction for a particle at a given position and with velocity vector v in a certain 
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direction. The particle is then propagated with velocity v over the distance l  to the 

interaction location. Next, the program chooses the type of interaction that will take 

place. For a dose calculation, one extra step is needed. The dose is defined as the 

amount of energy deposited per unit of mass (J/kg = Gy in SI units). Therefore, for 

each interaction that is simulated, the program calculates the energy balance: the 

energy of the ‘incoming’ particle(s) minus the energy of the ‘outgoing’ one(s). To 

calculate the dose in a particular volume (voxel), one adds the contributions from all 

interactions taking place inside the volume, and divides this by the mass in the 

volume. 

2.3 Example: An 8 MeV electron hitting the linac target 

To illustrate some of the principles of Monte Carlo dose calculations, the 

simulation of a photon that is generated in a linac head when an 8 MeV electron hits 

the target is described. The energy distribution of the photons generated is depicted 

in the left panel of Figure 2.1 The photon energy can be determined in two ways. The 

first one is the so-called hit-or-miss method. For this method, two random numbers 

are generated, one of which, designated “x”, is uniformly distributed between 0.01 

and 8 (photon energy), the other, “y” is uniformly distributed between 0 and 1.2 

(probability density of a photon with that energy). The value of 1.2 is chosen to be 

equal to the maximum of the energy probability distribution (left panel of Figure 2.1), 

or slightly above that. The point “x,y” is now plotted in this probability distribution. If it 

is above the curve “the target was missed”, the point is rejected, and a next point is 

randomly generated. If it is below, the point is accepted, and the photon energy is “x” 

MeV. 
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Figure 2.1 Left panel: energy probability distribution for photons that are 

generated when an 8 MeV electron hits a linac target. Right panel: cumulative 

probability distribution generated from the left panel. The cumulative probability at a 

certain energy is the probability to generate a photon at or below that energy.    

 

At first glance, it may seem that there is a reasonable chance that a chosen 

point “x,y” will end up below the curve, yielding the hit-or-miss method rather efficient.  

However, the probability density in Figure 2.1 is plotted on a log-scale. Therefore, a 

large number of points will be rejected. 

A more efficient method for selecting photon energies is based on the 

cumulative probability distribution (right panel of Figure 2.1). For this method, values 

for the cumulative probability are randomly selected, using a single random number, 

uniformly distributed between 0 and 1. Figure 2.1 shows an example for a selected 

value of 0.732. The corresponding energy, in this case 1.3 MeV, is selected. This 

algorithm is very efficient because only one random number is needed, and each 

value results in the selection of a photon energy, i.e. there is never a “miss.” 

Apart from the photon energy, the angles ϕ and ϑ between the directions of the 

incoming electron and the created photon have to be selected. Also for these angles, 

probability distributions are known. Therefore, the Monte Carlo program can generate 

values for ϑ and ϕ in exactly the same way as for the energy. Once the energy and 

angles of the photon are known, the distance to the first interaction site can be 
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selected, using the attenuation coefficient µ ([m-1]), which is  the product of the atomic 

cross sections ([m2]) of the materials that the photon encounters, and the atom 

density of these materials ([m-3]). The probability that the photon will travel a distance 

l  without undergoing any interactions is then given by exp(-µ l ), and µd l  is the 

probability to interact in the interval d l . So, the probability for an interaction between 

l  and l +d l  is given by µ exp(-µ l )d l . Similar as for the selection of the photon 

energy (Figure 2.1), a cumulative probability curve P( l ) can now be constructed for 

selection of the (first) interaction site:  

           

(1.1)   

 

From this cumulative probability distribution of distances, the travel length l  for 

a random number r in the range [0,1] can now be expressed analytically: 

  

           (1.2) 

 

Here, 1-r is again a random number that is uniformly distributed between 0 and 

1; in the final step it has been replaced by a new random number, r’. 

With the travel distance l  to the first interaction site known, the position of the 

photon can be updated, and the type of interaction that will take place can be 

selected, based on the cross section data for the different interactions. Subsequently, 

the energies and angles of the particles that are produced in the interaction are 

generated, and the whole process is repeated until all particle energies are below a 

pre-defined cut-off energy. 

∫
−− −===
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3 Basic elements of a Monte Carlo code for dose 

calculations  

3.1 Physics models 

The physics models are usually hard-coded in the Monte Carlo software. 

Photons are transported in a way that is analogue to reality. For electrons, the 

simulation of each individual interaction is very time consuming and impractical for 

radiotherapy applications. Therefore, so-called condensed history techniques have 

been introduced (section 7.2). These techniques are approximations of the “real 

physics”, and implementation differences exist between different codes. This may 

lead to different results, which is the main reason why these codes need to be 

thoroughly benchmarked. Even with condensed history techniques, electron transport 

often remains the most time-consuming part of radiotherapy Monte Carlo simulations.  

The user may be able to manipulate the physics modelling via a number of so-

called transport parameters. For example, the user may enable/disable certain 

interactions and/or set the values of parameters that determine e.g. cut-off energies 

or electron step lengths. Such parameters may significantly influence a simulation. 

For example, when a particle’s energy decreases below the cut-off energy, it is 

discarded and the remaining energy is deposited locally. Obviously, increasing this 

parameter will increase the calculation speed, but accuracy might be lost. See 

sections 7.1 and 7.2 for details.  

3.2 Interaction data tables 

Data tables with interaction probabilities for each type of interaction for each 

element are usually provided together with a Monte Carlo program. Each of the 

Monte Carlo programs has its own format for these tables, therefore interchanging 

data tables between the various Monte Carlo programs is a non-trivial task. However, 

since these data tables are so closely linked to the Monte Carlo program, the 

installation of the program will typically also include installation of the data tables (see 

section 7.3).  
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3.3 Random number generator 

By its nature, the Monte Carlo method requires a random number generator for 

sampling the probability distributions. In computer codes, this is generally solved by 

implementing a recurrence relation. Properties such as uniformity of distribution and 

random number sequence length are crucial for the reliability of the Monte Carlo 

code. This topic is addressed in more detail in Appendix B. 

3.4  Geometry  

The geometry is to be specified by the user. Depending on the code, different 

geometric structures can be defined: planes, cylinders, spheres, cones, and 

sometimes even more complicated structures, see section 8.1. In some general 

purpose Monte Carlo codes, an (additional) scoring geometry has to be introduced in 

regions where the dose distribution is to be calculated. 

3.5 Material composition 

All materials present in a simulation must be specified by the user. In most 

programs, the materials are specified in terms of their elemental composition and 

density (see chapter 8). Sometimes additional information is required to enhance the 

accuracy of modelling.  

3.6 Source definition 

The tracking of particles starts at a position (or range of positions) where the 

energy and angular distributions of the particles are known with some confidence. 

For instance, in a linac the energy and angular distributions of electrons hitting the 

target are fairly well known. Accelerator modelling is described in more detail in 

chapter 9. 
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3.7 Scoring 

To extract the absorbed dose distribution from the particle transport simulation, 

one has to define a so-called tally or scoring function. More details on this topic are 

provided in chapter 10.  

3.8 Variance reduction and approximations 

To increase the efficiency of Monte Carlo calculations, approximations and 

variance reduction techniques have been introduced. Examples of approximations 

are the already mentioned condensed history technique for electron transport, and 

the use of cut-off energies. Variance reduction techniques are statistical methods that 

enhance the efficiency of a calculation. Theoretically, these techniques result in 

identical expectation values as without variance reduction, whilst the calculation 

speed is increased. In practice, however, care should be taken and each of these 

techniques should be benchmarked. More details are given in chapter 11.  
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4 A brief history  

The technique of random sampling to solve mathematical problems is quite old. 

One of the earliest documentations is by Compte de Buffon in 1770. In the early 

nineteen-thirties, using a mechanical adding machine, Fermi already applied 

statistical sampling techniques for radiation transport calculations related to neutron 

diffusion (Metropolis 1987, Wood 1986). The statistical techniques were, however, 

considered impractical as they were time-consuming and tedious. During the second 

world war Mauchly and colleagues developed the first electronic digital computer 

named ENIAC, Electronic Numerical Integrator And Computer, containing around 

18.000 double triode vacuum tubes in a system with half a million solder joints 

(Cooper 1989). Development of the ENIAC was inspired by the labor- and time-

intensive ballistic computations for generation of firing-tables. The system was 

realised in late 1946, and in 1947 it was moved to its permanent home at the 

Ballistics Research Laboratory in Maryland, USA. Very soon it was realised that the 

ENIAC offered new opportunities for statistical sampling techniques. The first tests 

were on a variety of problems in neutron transport. One of the collaborators, N. 

Metropolis, named the mathematical method “Monte Carlo”, after the city with its 

famous casinos (Metropolis 1987, Cooper 1989). 

As computers gained speed and memory, the Monte Carlo codes became more 

sophisticated. The first version was written in machine code, but by the early 1960s 

programming languages such as FORTRAN (FORmula TRANslation released in 

1957 by IBM -International Business Machines- and standardised in 1966, 1977 and 

1990) got into use. The fast developments in computer hardware and software and in 

statistics were of great influence on the application of Monte Carlo techniques. These 

Monte Carlo methods on the other hand helped to improve the hard- and software, 

and became one of the most important tools of the statisticians.  

At first, the development of dedicated coupled photon electron transport codes 

for each specific problem required a lot of effort. Today, this is no longer necessary 

due to the availability of general purpose codes, like ETRAN, ITS, MCNP, EGS, 

GEANT, and PENELOPE. Most Monte Carlo systems dedicated to radiotherapy are 

(partially) based on these codes. Therefore, a short history of the most important 
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general purpose codes is given in the following section. The introduction of Monte 

Carlo into radiotherapy treatment planning is discussed in detail in section 14.1. 

 

4.1 General purpose codes 

The ETRAN (Electron TRANsport) code, developed and maintained at the 

National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, 

USA, contains the basic algorithms for simulating the tracks of electrons and photons 

travelling through matter (Seltzer 1988). The code was originally developed as a tool 

for solving electron transport problems involving energies up to a few MeV. Later, the 

production and propagation of secondary bremsstrahlung was added, to extend the 

calculation to higher energies. The methods used to generate electron trajectories go 

back to a paper of Berger (1963), describing the sampling from multiple-scattering 

distributions. In the early 1970's, at Sandia National Laboratories, the ETRAN code 

was made more user friendly, especially regarding the specification of the problem 

geometry, and extensions were made to lower energies by including more elaborate 

ionization and relaxation models. The combined software was designated the 

Integrated TIGER Series (ITS) system (Halbleib et al 1988). The Los Alamos 

National Laboratory (LANL) integrated the electron transport algorithms of ITS 3.0 

into their MCNP3 (Monte Carlo Neutron Photon) code, yielding the MCNP4 (Monte 

Carlo N-Particle) system, which was first released in 1990 (Briesmeister 2000). 

Based on this code, a different group at LANL developed MCNPX, which can be 

used to simulate many additional types of particle (Waters 2002). 

During the early 1960's, Nagel wrote his Ph.D. thesis at the Rheinischen 

Friedrich-Wilhelms-Universität in Bonn on electron-photon Monte Carlo. The in-house 

developed Fortran code was a very practical (freeware) tool for experimental 

physicists during the mid 1960's. Electrons and positrons could be simulated from 1 

GeV down to 1.5 MeV, and photons were followed down to 0.25 MeV. The code was 

limited in geometry handling. From 1972 to 1978, Ford and Nelson from Stanford 

Linear Accelerator Center (SLAC) collaborated to revamp Nagel’s program and make 

it more user friendly. In addition, special attention was given to allow for easy future 

enhancements. The resulting EGS3 code (Electron Gamma Shower) was introduced 
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in 1978. Nelson (SLAC) and Hirayama (National Laboratory for High Energy Physics, 

KEK) extended the flexibility of EGS in general, and for high energy accelerators in 

particular. Rogers and colleagues (National Research Council of Canada, NRC) 

extended the code to low energies. These efforts were pooled together in 1985, and 

EGS4 was introduced (Nelson et al 1985). In 1990, PRESTA (Parameter Reduced 

Electron Stepping Algorithm) was introduced in EGS4 (Bielajew and Rogers 1987). In 

2000, Kawrakow and Rogers released the EGSnrc code as the successor to EGS4, 

with further improvements in the modelling of electron transport (Kawrakow and 

Rogers 2000). 

PENELOPE (PENetration and Energy LOss of Positrons and Electrons) was 

developed by Universitat de Barcelona and Institut de Tècniques Energètiques, 

Universitat Politècnica de Catalunya in Barcelona, Spain, and Universidad Nacional 

de Cordoba, Argentina (Salvat et al 2003). It was first released in 1996. PENELOPE 

performs Monte Carlo simulation of electron-photon showers in arbitrary materials. 

Initially, it was devised to simulate the penetration and energy loss of positrons and 

electrons in matter; photons were introduced later. Large efforts were made to make 

the simulation of electron transport as accurate as possible, especially in the low 

energy region. 

The first version of GEANT (GEometry ANd Tracking) was written in 1974 as a 

bare framework, which initially emphasised tracking of a few particles per event 

through relatively simple detectors. The code was developed as a simulation tool for 

high energy physics experiments. From 1993 to 1998, the FORTRAN based 

GEANT3 simulation program was entirely redesigned as an object-oriented program 

written in C++, designated GEANT4 (Agostinelli et al 2003). This code is a 

collaboration of many international research groups under supervision of CERN 

(Conseil Européen pour la Recherche Nucléaire / European Organization for Nuclear 

Research). It is a very versatile code, useful for many different types of particles over 

a wide energy range and capable of handling complex geometries. GEANT4, 

includes a low-energy electromagnetic physics package, which makes it useful for 

radiotherapy applications. Recently, an implementation of the PENELOPE 

electromagnetic physics has also been added to the code. 
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5 General purpose Monte Carlo codes in radiotherapy 

At present, four general purpose Monte Carlo systems are in use for 

radiotherapy dose calculation. These systems are EGS (Nelson et al 1985, 

Kawrakow and Rogers 2000)), MCNP (Briesmeister 2000, Waters 2002), 

PENELOPE (Salvat et al 2003), and GEANT (Agostinelli et al 2003). 

EGS and PENELOPE simulate the coupled transport of photons and electrons 

(and positrons), while other particles such as neutrons or protons are not taken into 

account. This has the advantage that during the development of these codes all 

attention has been focused on the particles of interest for radiotherapy dose planning. 

On the other hand, in high energy photon beams (18 MV and higher) the production 

of neutrons and protons in the accelerator head may impact (the biological effect of) 

the physical dose distribution in the patient, especially in bone where even alpha 

particles have a non-negligible contribution (Chibani and Ma 2003). These particles 

can be taken into account in MCNP and GEANT. The latter codes were not 

developed specifically for low-energy (radiotherapy) dosimetry, but large efforts have 

recently been made to provide reliable low-energy extensions of these systems. 

In the next paragraphs, the four systems are described in more detail, focusing 

on the mutual differences. In general, it can be said that modelling of photon 

transport is quite similar in all four systems in the energy range of radiotherapy 

applications, although different cross section data are used. The main differences 

occur in the electron transport, which can be dealt with in several ways, having a 

large impact on the speed and accuracy of the systems. In the paragraphs below 

only a short introduction is given. For more details, the reader is referred to the 

corresponding references. An interesting overview has been given by Verhaegen and 

Seuntjens (2003). 

5.1 EGS 

In the past decade, much attention has been paid to the electron transport in 

EGS (Electron-Gamma Shower). In 1990, PRESTA (Parameter Reduced Electron 

Stepping Algorithm) was introduced in EGS4 (Bielajew and Rogers 1987), and in 
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2000 the EGSnrc code was released by Kawrakow and Rogers as the successor to 

EGS4. In EGS4 (Nelson et al 1985), the Molière (1948) multiple scattering theory is 

used, which is only valid for small scattering angles. In EGSnrc (Kawrakow and 

Rogers 2000, Kawrakow 2000a), an improved multiple scattering theory based on 

screened Rutherford elastic scattering is used instead. Furthermore, this code uses 

PRESTAII (Bielajew and Kawrakow 1997). The main improvement of PRESTAII 

compared to PRESTA is the introduction of a single scattering model of electron 

transport, making it possible to reduce the electron step length to very small values 

near material boundaries. These improvements are expected to improve the 

calculation accuracy of angular deflections for electrons, eliminate restriction on the 

maximum and minimum electron path length in EGS4/PRESTA-I imposed by the 

Molière theory, and provide an exact boundary-crossing algorithm by using single 

elastic collisions of electrons. 

From the benchmarks applied to EGSnrc (Kawrakow 2000b, Verhaegen 2002), 

it can be concluded that this code is very accurate even in the vicinity of interfaces 

between materials with high and low atomic numbers (Z). However, for MCTP 

applications EGS4 (PRESTA) seems good enough and is faster than EGSnrc. A 

disadvantage of EGS4 and EGSnrc is that users need to program their code in a 

macro Fortran code called Mortran. Obviously, only the geometry, source input, and 

tallying need to be programmed. In a pre-compilation step, the user code is 

connected to the EGS core.  

Two user codes, designated BEAM and DOSXYZ (Rogers et al. 1995, Rogers 

et al 2002), are available for applications in MCTP. BEAM is an EGS user code 

specifically developed for the modelling of a linear accelerator. All components of the 

accelerator (target, primary collimator, flattening filter, monitor, jaws, MLC, etc.) are 

pre-programmed in so-called component modules. The user can build an accelerator 

by simply summing the required components. An input file must be generated in 

which the dimensions, materials and transport parameters of the individual 

components must be defined. No programming efforts are required. With BEAM it is 

possible to determine so-called phase-space files in a plane at the exit of the linear 

accelerator. These files contain all necessary parameters (direction, location, energy, 

charge, etc.) of particles passing through the plane. Such files can then be used as 
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input for dose calculations in phantoms or patients using the other pre-programmed 

user code, designated DOSXYZ. In this code CT data can be imported and translated 

to voxels with a certain material and density. Systems as MCDOSE, Peregrine, 

XVMC and DPM (section 13) are totally or partially based on BEAM and DOSXYZ. 

5.2 MCNP 

MCNP is a general-purpose, continuous-energy, generalised-geometry, time-

dependent, coupled neutron/photon/electron Monte Carlo transport code. Two 

versions of the MCNP (Monte Carlo N-Particle) code, developed by different groups, 

currently exist. MCNP4C (Briesmeister 2000), is able to simulate the (coupled) 

transport of neutrons, photons and electrons, whereas MCNPX (Waters 2002) can 

simulate a variety of other particles as well. The photon and electron physics in the 

present version of MCNPX (version 2.5) are identical to those in MCNP4C. Hence, in 

the following we will denote both codes as MCNP. It is noted that the successor of 

MCNP4C, MCNP5 (Brown 2003), has been released, but is not yet available outside 

the USA. 

The electron transport algorithms in MCNP are claimed to be equal to those in 

the ITS 3.0 system (Halbleib et al 1988), which in turn were derived from ETRAN 

(Seltzer 1988). The Goudsmit-Saunderson multiple scattering theory is used, while 

the sampling of energy loss is based on the Landau straggling theory. Several 

investigators have shown though that care should be taken with the electron 

transport (Jeraj et al 1999, Schaart et al 2002, Reynaert et al 2002). A systematic 

error is present in the default MCNP electron energy indexing algorithm. However, 

the user can choose to use the ITS electron energy indexing algorithm instead, which 

leads to correct results. An additional problem exists with MCNP4C when the 

geometry contains many boundaries, e.g. in the case of a voxelised phantom. 

MCNP4C requires the voxels in such a phantom to be modelled as separate material 

regions, even if they exist of the same material. It has been shown that in such cases 

the cumulative effect of many small boundary crossing artefacts may lead to 

significant errors in the calculated dose distribution (Schaart et al 2002, Reynaert et 

al 2002).  
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In contrast to EGS and GEANT4, MCNP does not require any programming by 

the user. Instead, the user only needs to provide an ASCII input file specifying the 

problem geometry (using a variety of available surface types and/or macrobodies 

such as spheres, boxes and cylinders), the source(s) (energy and angular spectra, 

etc.), the tallies (e.g. energy deposition or track length), and (optionally) the use of 

one or more of the many available variance reduction techniques. The simulation 

results are provided in ASCII output files. Graphical user interfaces, such as VISED 

(2004) are available to generate input files and to visualise the output data. 

5.3 PENELOPE 

PENELOPE (PENetration and Energy LOss of Positrons and Electrons) has 

been introduced recently (Sempau et al 1997, Salvat et al 2003). The code simulates 

the coupled transport of electrons, positrons and photons with energies between a 

few hundred eV and 1 GeV. It is capable of handling complex geometries and static 

electromagnetic fields. Large efforts were made to make the simulation of electron 

transport as accurate as possible. Ideas introduced in PENELOPE have been 

implemented in EGSnrc and vice versa. So it can be expected that these codes will 

provide rather similar results. In PENELOPE a mixed scheme of single and multiple 

scattering is used, comparable to EGSnrc. The multiple scattering algorithms are 

based on the Goudsmit-Saunderson theory. In the PENELOPE implementation of 

multiple scattering, the angular deflection and the lateral displacement for each 

electron step are accounted for using the so-called random hinge method, which is a 

simple and fast method for obtaining an accurate geometric representation of the 

electron track. The user has to program the application in Fortran, although several 

user codes are available in the system. Benchmarks of PENELOPE against other 

codes and experiments have recently been published by Sempau et al (2001), 

Sempau et al (2003) and Ye et al (2004). These studies generally show good 

agreement with EGS and experiments. The applicability for linac modelling has been 

illustrated in Sempau et al (2003). 
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5.4 GEANT 

GEANT (GEometry ANd Tracking) was originally developed for high-energy 

physics. It can be used for the simulation of many types of particle over a wide 

energy range. The current version, GEANT4, includes a low-energy electromagnetic 

physics package, which makes it useful for radiotherapy applications (Agostinelli et al 

2003). Recently, an implementation of the PENELOPE electromagnetic physics has 

also been added to the code. The code can handle complex geometries, 

electromagnetic fields, (electronic) detector response, and allows for time-dependent 

(4D) modelling of e.g. decaying particles and/or moving objects. A variety of 

visualization tools is provided, as well as connectivity to data-analysis software and 

computer-aided design (CAD) programs (for geometry input). The user must provide 

a set of C++ objects that are built upon the Monte Carlo core of the program in an 

object-oriented approach.  

Recently, GEANT4 has found use in a variety of medical physics applications 

(Barca et al 2003, Archambault et al 2004). Some benchmarks of GEANT4 electron 

and photon transport against other Monte Carlo codes and measurements have been 

published by Carrier et al (2004) and Rodriques et al (2004). These studies showed 

good agreement for photons. Carrier et al reported fair agreement for electrons, 

although some non-negligible differences with e.g. EGSnrc (4% for a 10 MeV parallel 

beam) were found (see also Torres et al 2004). Recently Poon and Verhaegen 

(2005) extensively benchmarked GEANT4 against EGSnrc for radiotherapy 

applications. In this paper, a very nice overview of the photon and electron transport 

physics modelled in the GEANT code is presented for the 3 different electromagnetic 

physics models (standard, low-energy, Penelope). For photon beams depth dose 

curves are in good agreement except in the buildup zone. For electron beams 

differences are more important. It is also illustrated that results depend highly on 

transport parameters as e.g. the electron step size. This is even more clearly 

demonstrated in the paper of Poon et al (2005), where a more fundamental study of 

the electron transport in GEANT4 is performed. Accurate results can be obtained 

after careful selection of transport parameters. In that case the code is an order of 

magnitude slower than e.g. EGSnrc. As new releases of GEANT4 are continuously 
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improved with respect to the code, it can be expected that the role of GEANT4 in 

medical physics may become more important in the near future. 

In this context it is interesting to note that the OpenGATE collaboration has 

recently released the first version of GATE, a modular, scripted, GEANT4-based 

Monte Carlo code which, in contrast with GEANT4 itself, does not require the user to 

be familiar with C++ (Jan et al 2004). Although this code was primarily developed for 

nuclear medicine applications (modelling of PET and SPECT scanners), extensions 

into other domains such as radiotherapy are currently being developed.  
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6 Rationale for Monte Carlo treatment planning 

6.1 Requirements on uncertainty in Treatment Planning 

An interesting discussion on uncertainty in treatment planning is provided in 

AAPM report No 85 of the AAPM Task Group 65 (Papanikolaou et al 2004). As 

stated in this report, due to the steep slope of the TCP-and NTCP-dose relationships, 

a dose error of 5 % might lead to a TCP change of 10% to 20%, and to even larger 

NTCP changes (see also Fraass et al 2003). Clinical effects are already noticeable 

for dose errors of 7 % (Papanikolaou et al 2004). Therefore accurate dose 

information is required.  

Between the dose prescription to a tumour and the actual dose delivery a large 

number of steps are involved. During each step, uncertainties are introduced, 

accumulating to an overall uncertainty for the full process of dose delivery. An 

overview of the various components of uncertainty is given in Table 1 of AAPM 

Report 85. An overall uncertainty of 4.3 % (1σ) is obtained, which is in 

correspondence with the more familiar 5 % (1σ) obtained in previous work (Mijnheer 

et al. 1987, ICRU 1976).  

Improving the quality of the dose engine, i.e. reducing the uncertainty in the 

dose calculation, will reduce the overall uncertainty in the delivered dose. It should be 

noted that the use of an extremely accurate dose engine will not automatically lead to 

very low uncertainties in clinical dose delivery as several other factors contribute 

significantly to the overall uncertainty. However, in AAPM report 85 it is claimed that 

the overall uncertainty in the delivered dose will decrease to 2.5 % (1σ), leading to a 

situation where the accuracy of the dose engine plays an important role. At present, it 

is generally believed that the dose calculation should be accurate to within 2% - 3% 

(1σ) (Fraass et al 2003). 
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6.2  Why Monte Carlo Treatment Planning  

Monte Carlo dose calculation engines have the potential to meet, or even 

perform better than, the 3 % (1σ) uncertainty requirement, regardless of beam 

geometry and patient composition. As for any type of dose engine, however, the 

uncertainty for a Monte Carlo dose engine will never be zero due to, for example: 

• imperfect matching of the Monte Carlo beam to the actual accelerator beam, 

• uncertainties in the cross section libraries, 

• the standard deviation due to the limited number of histories simulated, 

• uncertainties in the conversion of CT data to material composition and density. 

The quality of beam matching is very difficult to estimate, but in general it should 

be possible to achieve this within 1 % (1σ) or better (Verhaegen and Seuntjens 2003 

and Ma, Jiang 1999). Most authors assume that the uncertainty in cross section 

libraries is small enough to be negligible (Fraass et al 2003). The statistical 

uncertainty depends on the number of histories. The uncertainty associated with 

tissue characterization is difficult to quantify. Instead of using water with different 

densities for all tissue types, the real tissue composition must be estimated for the 

calculation of cross sections. 

Taking all of the above-mentioned uncertainties into account, Monte Carlo 

treatment planning is expected to be able to offer an uncertainty in dose calculation 

well within 3 % (1σ) required for accurate radiotherapy. Other advantages are given 

by Fraass et al (2003). One advantage over conventional dose engines is that the 

uncertainties are independent of the treatment setup. Furthermore, the Monte Carlo 

method could lead to an increase in confidence in the obtained dose distributions 

(see also Cygler et al 2005). This could lead to the delivery of a higher tumour dose 

to avoid recurrence, while having faith in the reported dose to critical organs. 

An interesting discussion is provided in a point/counterpoint discussion between 

Mohan and Antolak (2001). Arguments against MCTP raised by Antolak include: the 

influence of (statistical) noise, the influence of approximations and variance reduction 

techniques introduced to limit the calculation time and the limited spatial resolution 

(voxel size) often used, again to speed up the calculations. These arguments are 

considered of minor importance by Mohan: approximations and variance reduction 
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techniques are illustrated to introduce no bias, the effect of statistical noise is very 

limited and resolutions up to 2 or 3 mm can be reached within a few minutes of 

calculation time. It is clear, however, that the added value of MCTP compared to 

superposition/convolution algorithms should be illustrated by examples. In the 

following two paragraphs a literature study of phantom studies and comparisons for 

clinical cases is provided.  

 

6.3 Phantom experiments 

In the vicinity of low density volumes (lung) and air cavities, Monte Carlo dose 

calculations have been reported to be more accurate than conventional techniques 

(Mohan et al 1997, Solberg et al 1998, Ma et al 1999, Keall et al 2000, Martens et al 

2002, Heath et al 2004, Paelinck et al 2005). Mohan et al (1997) stated that 

conventional methods (including superposition/convolution techniques) will give rise 

to deviations ranging from 5 % to 10 % in the presence of tissue heterogeneities. The 

results of Ma et al (1999) illustrate that MCTP is certainly interesting for electron 

beams, as e.g. the FOCUS conventional dose calculation algorithm (pencil beam 

algorithm) leads to large deviations (up to 15 %) and isodose line shifts of more than 

1 cm (see figure 6.1).  
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Figure 6.1: Isodose line shift between results obtained with the FOCUS pencil 

beam algorithm (a) and Monte Carlo calculations (b) (reproduced with kind 

permission of AAPM from Ma et al (1999)). 

 

For photon IMRT applications, an added value of the MC method can be found 

in head-and-neck treatment and treatment of lung cancer, because of the presence 

of tissue inhomogeneities resulting in loss of electronic equilibrium. For IMRT the 

best available non-Monte Carlo dose calculation engines are based on the 
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superposition/convolution method (Boyer and Mok 1984, Mackie et al 1985, Ahnesjö 

1989, Keall and Hoban 1996, Yu et al 1995). Ma et al (1999) obtained large 

differences between the FOCUS planning system and a Monte Carlo dose engine for 

a phantom containing lung or bone layers, even when the superposition convolution 

method of FOCUS was used. An interesting comparison of two 

superposition/convolution algorithms and the Monte Carlo method for a lung cavity is 

provided by Paelinck et al (2005) (see figure 6.2). 

 

Figure 6.2: Comparison of two superpostion/convolution algorithms and Monte 

Carlo calculations for a phantom with a lung insert in a 6 MV beam (reproduced with 

kind permission from Paelinck et al (2005)). 

 

The Helax TMS system (Nucletron, Veenendaal, The Netherlands) 

systematically underestimates the dose in the lung-equivalent cavity by 6 %, while 
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the Pinnacle algorithm (Philips Medical Systems, Best, the Netherlands) 

overestimates the dose behind the cavity by 4 %. Also in the work of Crammer-

Sargison et al (2004), significant deviations in lung equivalent material were obtained 

for the CadPlan pencil beam convolution algorithm (Varian Oncology Systems Inc., 

Palo Alto, CA). Arnfield et al (2000) obtained substantial deviations between 

measurements and superposition/convolution (Pinnacle) in and around lung-

equivalent material, while the Monte Carlo results are in excellent agreement with the 

measurements. These deviations become more important when simulating a small 

(4x4 cm) high energy photon beam (18MV). Krieger and Sauer (2005) performed a 

comparison between the pencil beam (Helax TMS), superposition/convolution (Helax 

TMS) and Monte Carlo methods for a multi-layer phantom consisting of styrofoam (to 

simulate the low density of lung) and polystyrene layers for regular beams. In 

polystyrene, superposition/convolution and MC were in agreement with the 

measurements while the pencil beam algorithm deviated by 12 %. In styrofoam, 

however, even the superposition/convolution algorithm deviated by more than 8 % 

from measurements and MC results. 

 

6.4 Comparisons for clinical cases 

In the examples described above, extreme situations were investigated 

consisting of one single beam crossing a large lung/air cavity. It is not straightforward 

to extrapolate these findings to clinical practice. Therefore in this paragraph we will 

focus on examples of realistic clinical calculations. The results are discussed 

chronologically and the focus is on the most recent results as these are obtained with 

the most recent (and thus most accurate) versions of the available conventional dose 

calculation engines.  

Wang et al (1998) developed a patient specific Monte Carlo dose engine that 

was evaluated for conformal lung treatment. The method was approximate as only 

one medium (water) was defined, although density variations where taken into 

account. The dose distributions obtained were compared against a conventional dose 

engine based on the equivalent path length (EPL) method. The Monte Carlo results 

illustrated that 20 % of the planning target volume (PTV) was underdosed, while the 
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maximum doses in cord and heart (two parameters used in the objective function of 

the treatment planning system) were underestimated by the conventional system by 

more than 25 %. Deviations were attributed to the approximate modelling of lateral 

particle transport in low density regions by the conventional dose calculation engine. 

In a follow-up study (Wang et al 2002), the same PB algorithm and MC code were 

compared for IMRT treatment of five lung patients and four head-and-neck patients. 

For one lung patient, a decrease of 10% in D95 and 6 % in Dmean was obtained, while 

for the other patients the PTV coverage decreased with 2-5%. For one of the head-

and-neck patients (a patient with recurrence) D95 differed by 9 %. In lung, differences 

in D05 and Dmax of up to 10 % were found. Also in the spinal cord, differences larger 

than 5 % were noticed. For all head-and-neck patients, dose differences in the optical 

chiasm were below 2 %. An interesting conclusion is that larger effects are observed 

for individual fields than for the composite plan. 

 

Figure 6.3: Comparison between Konrad Pencil beam calculations and EGSnrc 

for head and neck treatments (reproduced with kind permission from Laub et al 

(2000)). DVHs are for the PTV and optical chiasm. Abbreviations used: PB (Pencil 

Beam), Veri (EGS4 Verification calculation), IM/MC (intensity modulated/Monte 

Carlo). IM/MC is the dose distribution obtained from the Monte Carlo inverse planning 

system. 



 

 

 

30

Laub et al (2000) obtained large differences between the KonRad Pencil Beam 

algorithm with 1D inhomogeneity correction (and accounting for lateral electron 

transport) on one hand and EGS4 (Nelson et al 1985) on the other hand for head-

and-neck treatments (see figure 6.3).  

The Monte Carlo result in the PTV was systematically lower than the PB result, 

although it is not clear whether the MC dose was expressed as “dose to water” 

(presence of large air cavity with corresponding low stopping powers in the PTV can 

lead to differences in DVH of PTV, see par 10.4 for a more detailed explanation). 

Differences were attributed to the rebuild-up behind the air cavity. According to the 

MC results the dose constraint in the chiasm was violated.  

Francescon et al (2000) compared the superposition/convolution algorithm of 

Pinnacle with the Monte Carlo code BEAM (Rogers et al 1995) for mediastinal and 

breast treatments. Deviations were below 2.5 % and thus within 2 standard 

deviations of the Monte Carlo calculation. Also for single fields and large 

inhomogeneities the differences were negligible. The study was restricted to large 

beams. As stated by Ahnesjö (1989) larger deviations are expected for smaller fields. 

Jeraj et al (2002) illustrated that two types of error are introduced when using an 

approximate dose calculation algorithm for inverse treatment planning, namely a 

systematic error due to errors in the dose calculations and a convergence error 

resulting from the fact that the optimised beam settings obtained by the approximate 

dose engine will differ from those obtained with an accurate dose calculation 

algorithm. In this study, results obtained by Monte Carlo, superposition/convolution 

and pencil beam methods were compared. Systematic errors were below 1% of Dmax 

in the tumour and slightly larger outside the PTV for the superposition/convolution 

method and around 5% for the pencil beam algorithm. The authors concluded that 

pencil beam algorithms should be replaced by superposition/convolution or Monte 

Carlo algorithms. 

Leal et al (2003) compared the Plato PB algorithm (Nucletron, Veenendaal, The 

Netherlands) with the Monte Carlo program BEAM for different clinical cases. As 

illustrated in figure 6.4, significant differences were obtained when comparing the 

DVHs  in the bladder and the rectum. 
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Figure 6.4: Plato PB algorithm (TPS) versus Monte Carlo (MC) for a prostate 

treatment (reproduced with kind permission from Leal et al (2003)).   

 

As recently stated by Chetty et al (2005): when comparing Monte Carlo results 

with conventional dose calculation engines, it would be interesting to distinguish 

between effects related to differences in the beam model and effects related to the 

particle transport within the patient geometry. Therefore Chetty et al used two 
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versions of an equivalent path length algorithm, namely a version with an 

approximate beam model, and one with an accurate beam model that provides 

excellent agreement when comparing calculational results with measurements in a 

homogeneous phantom.   

 

Figure 6.5: Comparison of equivalent path length (EPL) algorithm with Monte 

Carlo calculations (DPM) illustrating the importance of accurate tuning for a 

homogeneous phantom (above) and a heterogeneous phantom (below). The results 

depicted with “best fit” are obtained with the accurate beam model. (reproduced with 

kind permission from Chetty et al (2005)). 
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These two models were compared with the DPM (see section 14.2 for a 

description of DPM) Monte Carlo dose engine for a homogeneous phantom, a 

heterogeneous thorax phantom and a lung patient plan (see figure 6.5). 

The importance of an accurate beam model was illustrated by the fact that the 

EPL algorithm using the accurate beam model (“best-fit results”) gave rise to a much 

better agreement with the Monte Carlo results for 6 MV in a homogeneous phantom. 

For the lung phantom though, the disagreement between the mean lung dose of the 

best-fit results and the MC method was 30 % for 15 MV. This illustrates (as stated by 

the authors) that especially at high energy (15 MV) the inhomogeneity effects 

(transport of secondary electrons in low density regions) may be more significant 

than beam model approximations.  

 

Figure 6.6: Comparison of Corvus pencil beam algorithm with MCSIM Monte 

Carlo calculations for the prostate (reproduced with kind permission from Yang et al 

(2005)). 

 

Yang et al (2005) compared the Corvus finite-size PB algorithm (with and 

without inhomogeneity corrections) with Monte Carlo calculations (MCSIM, see 
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section 14.3) for 25 coplanar and 5 non-coplanar IMRT plans for the prostate (see 

figure 6.6).  

For the coplanar plans the agreement between MCSIM and Corvus was within 3 

%. For the non-coplanar plans, differences up to 7 % in Dmean and above 8 % in D98 

were obtained in the PTV. Another conclusion was that it was necessary to apply the 

EPL heterogeneity corrections in Corvus.  

Boudreau et al (2005) compared Corvus (with and without EPL correction) with 

the Peregrine Monte Carlo method (see section 14.5) for IMRT head and neck 

treatment planning (see figure 6.7 and table 6.1).  

 

 

Table 6.1: Summary of ratios between Corvus and Peregrine results obtained 

by Boudreau et al (2005) (reproduced with kind permission of Boudreau et al (2005)).  
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Figure 6.7: Comparison of Corvus system with Peregrine Monte Carlo 

calculations (reproduced with kind permission from Boudreau et al (2005)). 

 

 

For the brainstem, Peregrine delivered on average a 6% higher Dmean, so for 

individual patients even larger differences were obtained. The Peregrine system was 

extensively benchmarked against measurements (Heath et al 2004). 

Reynaert et al (2005) presented a comparison between two Monte Carlo dose 

calculation engines (Peregrine and MCDE) and the Helax TMS 

superposition/convolution algorithm for a head-and-neck patient (see figure 6.8).  
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   (a) 

 (c) 

Figure 6.8: Comparison between the Monte Carlo dose calculation engines 

Peregrine and MCDE. In part (a) the MCDE doses (obtained with the MLCE model 

for the Elekta MLC) were systematically multiplied by 1.07, illustrating a dose 

difference of 7 % in the optical chiasm. In part (b) (lateral profiles of 2x40 and 40x2 

beam segments) the cause of the discrepancies is demonstrated (problem with MLC 

model). (reproduced with kind permission from Reynaert et al 2005). 

(b) 
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In this work it was demonstrated that Peregrine provided systematic errors in 

the DVHs in the optical chiasma, due to a systematic error in the leaf projection. The 

superposition/convolution results are in acceptable agreement with MCDE. Only one 

patient was studied. 

 

Figure 6.9: Comparison of PB algorithm, superposition/convolution (Helax TMS) 

and BEAMnrc/DOSXYZnrc Monte Carlo calculations for a head and neck patient. 

(reproduced with kind permission from Seco et al (2005))  
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Seco et al (2005) performed a comparison between a PB, a 

superposition/convolution (Helax TMS) and a MC system for a head and neck patient 

(see figure 6.9).  

 

Large differences were obtained in the PTV but, as stated by the author, this 

was largely caused by the fact that the MC dose in the air cavities was expressed as 

“dose to medium” (see section 10.4).  In the critical structures the Monte Carlo DVHs 

differed significantly from the PB and superposition/convolution results.  

 

The most direct way to determine the added value of MCTP is to try to link 

observed differences in dose maps to clinical outcome. This can be done by e.g. 

comparing post-treatment CT scans with (1) possible recurrence within the PTV with 

regions of underdosage (as predicted by the MC results) and (2) possible side effects 

in critical tissues in regions of overdosage. Data on this topic is still missing. An 

interesting paper on this topic was published by De Jaeger et al (2003). Lung cancer 

patients, originally planned with an EPL algorithm, were retrospectively recalculated 

with a superposition/convolution algorithm, illustrating large differences in the mean 

lung dose (up to 20 %). The Lyman model was used to illustrate that these dose 

differences can lead to complications in lung tissue.   

 

 

 

6.5 Conclusions  

Based on single beam phantom experiments it can be concluded that well-

benchmarked MC dose engines clearly outperform both PB and 

superposition/convolution algorithms regarding dosimetric precision. Also for realistic 

clinical plans the MC codes are superior to PB calculations. More studies are needed 

to investigate to what extent the replacement of superposition/convolution algorithms 

by MC may result in a benefit for clinical plans. 

Most published MC results for photon beams were obtained by MC experts with 

well benchmarked research systems. The influence of the approximations and 
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variance reduction methods introduced in commercial MCTP systems on the 

uncertainty are not yet clear. Moreover, even an MCTP system without 

approximations or variance reduction methods can contain systematic errors. 

Consequently, every individual MCTP system must be benchmarked before clinical 

use.  

An important conclusion is that Monte Carlo dose calculation engines, when 

carefully validated against measurements, provide an additional benchmarking tool 

for treatment planning, in situations where measurements are difficult or even 

impossible (Mohan 1988). 

 



 

 

 

40

Part II: Fundamentals of Monte Carlo 
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7 Modelling of particle transport 

The following discussion will be restricted to coupled photon-electron transport 

as this is the focus of the present report. In a recent paper, Chibani and Ma (2003) 

investigated the influence of photonuclear reactions in the linac head for high-energy 

photon beams (18 MV and higher). The effects of neutrons, protons and alphas on 

dose (taking into account the RBE of the particles) are below 0.7 %. Therefore it is 

unlikely that these particles will ever be taken into account in a MCTP system for 

photon and electron beams. 

7.1 Photon transport 

In general, the types of photon interaction taken into account in a Monte Carlo 

treatment planning code are the photoelectric effect, Compton scattering, Raleigh 

scattering and pair production.  

In the case of photoelectric absorption, the photon interacts with a (tightly 

bound) atomic electron. In this process, which is dominant at low photon energies, 

the photon disappears and all of its energy is transferred to the electron, which is 

ejected from the atom with a kinetic energy equal to the difference between the initial 

photon energy and the electron’s binding energy. As a result of this process, one of 

the atomic shells is left with a vacancy which is promptly filled by a less tightly bound 

electron, resulting in the emission of a fluorescence X-ray or one or more Auger 

electrons. In a detailed Monte Carlo simulation, all of the secondary particles (photo-

electrons, X-rays and Auger electrons) may be transported. However, in cases where 

this does not significantly influence the end result, computing time may be saved by 

switching off the transport of one or more of these types of secondary particles.  

In case of Compton scattering, a photon interacts with a free (i.e. unbound) 

electron. If the photon energy is high with respect to the binding energy of an electron 

in its atom, this electron can be considered free for this purpose. Part of the photon 

energy is transferred to the electron. The scattered photon and the electron emerge 

from the interaction at angles relative to the direction of the initial photon that are 

related to the particle energies because of the conservation of energy and 
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momentum. Compton scattering is an important process for the energies of interest in 

radiotherapy, especially in low-Z materials. 

In Raleigh scattering, essentially no energy is exchanged; only the direction of 

the photon is changed, usually by a small angle. Raleigh scattering is also called 

coherent scattering since the photon scatters elastically off an entire atom, where all 

electrons behave coherently. The importance of Raleigh scattering is relatively small, 

but not always negligible. 

In the case of pair production, the photon disappears and an electron-positron 

pair is created. This process is only possible if the photon energy is higher than twice 

the electron rest mass (2 × 511 keV), and dominates at high energies in dense 

materials. The positron created in the interaction will annihilate with an electron when 

it comes to rest, resulting in the emission of two 511 keV annihilation photons. 

In Section 1, an example is given on how the transport of photons is simulated. 

It is explained that, for each photon emitted by the source, the distance to the first 

interaction is sampled, based on the probability exp(-µ l) that the photon will not 

interact over a distance l.  

The photon is then transported to the location of the first interaction. 

Subsequently, the type of interaction to be simulated is sampled, based on the partial 

cross sections for the different interactions contained in the interaction data tables 

(see section 7.3). The selected type of interaction is then simulated. Here, use is 

made of the well-known theories describing the kinematics of the various types of 

photon interaction, see e.g. Attix (1986). In case of, for example, a Compton 

interaction, the energy and direction for the scattered photon are sampled. If electron 

transport is taken into account, the energy and direction of the electron participating 

in the interaction are also calculated. This particle is put on the stack for later 

transport. Then, the distance to the next interaction is sampled for the Compton 

scattered photon, and the process is repeated until the photon is absorbed and all 

secondary particles have been transported.  

If a photon is transported through a phantom consisting of multiple materials, it 

is possible that the sampled distance to the next interaction exceeds the distance to 

the nearest material boundary. In such cases, the photon is first transported to the 

boundary. Then, the distance to the next interaction is sampled using the cross 
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sections of the material into which the photon is entering. The photon track is then 

continued into the new material region (without changing the direction of flight). 

In some calculations, the transport of the fast electrons created by photons can 

be ignored since they transport energy over negligibly small distances and/or 

charged-particle equilibrium exists. Since electron transport tends to consume a lot of 

computation time in Monte Carlo simulations, it may be attractive to switch off 

electron transport in such cases. However, the fast electrons may in turn produce 

(bremsstrahlung or X-ray) photons, which may have a significant effect on the end 

result. Therefore, some Monte Carlo codes offer the possibility to generate such 

secondary photons even if electron transport is turned off. The algorithms used for 

this purpose rely on certain assumptions (e.g., in the tick-target approximation it is 

assumed that each secondary electron is completely absorbed in the same material 

in which the corresponding photon interaction has taken place) and therefore need to 

be used with some caution. 

The physics of photon transport is implemented very similarly in most modern 

Monte Carlo codes. Small details can nevertheless be different, e.g. the handling of 

the Compton effect regarding the binding of the atomic electron. A condensed 

overview of these differences can be found in Verhaegen and Seuntjens (2003). 

7.2 Electron transport 

The physical processes to be modelled when simulating the transport of 

electrons through matter are elastic scattering by (screened) atomic nuclei, inelastic 

collisions with atomic electrons causing either excitation or ionisation, 

Bremsstrahlung production, and the emission of X-rays and Auger electrons following 

electron-impact ionisation. Nuclear processes (which only occur at high electron 

energies) are often neglected. Positrons are sometimes simply modelled as electrons 

with the addition that annihilation photons are created when the particle comes to 

rest. More elaborate models use separate positron cross-section tables and include 

rare positron decay processes such as in-flight annihilation and three-photon 

annihilation. 

An important difference between modelling of electrons and photons lies in the 

fact that photons undergo a relatively small number of discrete interactions per 



 

 

 

44

particle track, whereas electrons undergo a very large number of Coulomb 

interactions with the electrons and atomic nuclei in the material. It is computationally 

very expensive to simulate each of these individual Coulomb interactions, and 

therefore this is not normally done in general-purpose codes or dose engines for 

treatment planning.  

Instead, a so-called condensed-history approach is usually applied (Berger 

1963). In such a model, each electron track is subdivided into a series of short track 

segments, usually called ‘steps’. Instead of modelling the individual elastic and 

inelastic collisions along each step, the resulting (cumulative) energy loss and 

angular deflection are sampled once per step only.  

The sampling of angular deflection may be based on a so-called multiple-

scattering formalism. One example is the implementation, in EGS4, of the theory by 

Molière (1948). The Molière distribution is a universal function of a scaled angular 

variable, which makes it relatively easy to sample the angular deflection for arbitrary 

step lengths during a run. A disadvantage of this theory is that it is based on a small-

angle approximation, so large-angle deflections are modelled less accurately. 

Another multiple-scattering theory, the Goudsmit-Saunderson (1940) formalism, is 

valid for all scattering angles. However, sampling the angular deflection for arbitrary 

step lengths during a run is less straightforward, so codes based on this theory (such 

as ETRAN, ITS and MCNP) usually sample the deflection angle from stored multiple-

scattering distributions that have been calculated for a pre-selected set of path 

lengths during the initiation phase of the run (Berger and Wang 1988). 

The sampling of electron energy loss may be done in different ways. A 

distinction is commonly made between so-called class I and class II algorithms 

(Berger 1963, Rogers and Bielajew 1988), see Figure 7.1.  

In a class I code the primary electron is not directly influenced by the generation 

of a secondary electron. Instead, energy straggling (i.e., the fluctuation in electron 

energy due to differences in the energy lost by different electrons of equal initial 

energy traversing the same path length) due to the creation of secondary electrons is 

taken into account explicitly in the algorithm used to sample the energy loss for each 

electron step. Examples of such codes are ETRAN and MCNP, in which the energy 

loss is sampled from the Landau (1944) straggling distribution. An advantage of this 
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approach is that energy straggling is always modelled accurately, even if a high 

energy threshold for knock-on production is applied. This may greatly speed up a 

simulation if the transport of low-energy secondary electrons is not important. A 

disadvantage of the class I approach is the possibility for negative energy loss events 

in small voxels. Such events may occur if the energy carried out of a voxel by a 

secondary electron created within it is larger than the amount of energy deposited in 

the voxel by the primary (and secondary) electron.  

 

 

Figure 7.1 Different ways to perform a sampling of electron energy loss, class I 

and II algorithms. When a secondary particle is generated, the primary particle step is 

stopped in a class II algorithm, and a new energy and angle are selected for the 

primary particle in correlation with the parameters of the secondary particle 

(preservation of energy and momentum on a microscopic scale). In a class I code 

this is not the case: the primary particle step does not depend directly on the 

parameters of the secondary particle, although a linkage through the cross sections 

is obviously present (preservation of energy and momentum on a macroscopic 

scale).     

 

In a class II code such as EGS the energy loss and angular deflection of the 

primary electron are directly affected by the generation of the secondary electron. 

The main advantage of this approach is that the creation of knock-on electrons is 

simulated in a way that is analogous to reality. This may be important in some cases. 

For example, when simulating the passage of electrons through a thin foil, the energy 

of the small fraction of electrons that have been scattered to large angles by a knock-

on collision will be much lower than their initial energy, as the remainder has been 

transferred to the secondary electron. A disadvantage of the class II approach is that 

the accuracy of the simulation of energy straggling depends on the cut-off energy for 
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knock-on (secondary electron) production. Since the number of knock-ons to be 

simulated increases quickly when this cut-off energy is decreased, long computation 

times may be required in cases where energy straggling due to low-energy 

secondary electron creation is important. 

It is noted that the same distinction between class I and class II algorithms can 

be applied to the creation of Bremsstrahlung photons. However, most codes, 

including EGS, ETRAN and MCNP, use a class II algorithm for sampling radiative 

energy losses. 

Some codes allow the user to switch off the sampling of energy loss and to use 

the expectation value of the energy loss per unit path length instead (i.e., the 

stopping power) for calculating the energy loss per electron step. This is called the 

continuous-slowing-down-approximation (CSDA). In cases where the effect of energy 

straggling is not important, for example when it is small compared to the influence of 

path length straggling (i.e., the fluctuation in electron energy due to differences in the 

total path length travelled by different electrons of equal initial energy traversing the 

same thickness of material), simulations may be speeded up greatly by using the 

CSDA. 

An important parameter in any condensed-history model is the electron step 

size. On one hand, the step size must be large enough so that a sufficiently large 

number of Coulomb interactions occur within each step for the applied multiple-

scattering- and energy-loss-models to remain valid. On the other hand, the step size 

must be small enough so that any errors due to the approximation of the curved 

electron track by a series of straight line segments remain negligible. In addition, the 

fractional energy loss per step must remain small since multiple-scattering algorithms 

are usually based on the assumption that the electron energy remains constant 

during a step. 

Some Monte Carlo codes apply a path length correction to each simulated 

(straight) electron step to correct for the difference with the corresponding (curved) 

segment of the “true” electron track. Similarly, one may apply a correction for the 

lateral displacement that occurs during each electron step. EGS4 and EGSnrc, for 

example, offer such corrections through the PRESTA (Parameter Reduced Electron 

Stepping Algorithm, Bielajew and Rogers 1987) and PRESTAII (Bielajew and 
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Kawrakow 1997) algorithms, respectively. Such algorithms may allow the use of 

fewer, larger electron steps, increasing the speed of the simulation without 

compromising the accuracy of a simulation. 

With any condensed-history approach, one may encounter problems in very 

small material regions. When the electron step size becomes comparable to or larger 

than (one or more of) the dimensions of the region of interest (e.g. a small, gas-filled 

ionisation chamber), the electron tracks within the region of interest are no longer 

accurately modelled and so-called step-size artefacts may occur. In such cases, one 

may try to solve the problem by reducing the electron step size, as is indeed possible 

with some codes. Since reducing the step size will slow down the calculation, it is 

preferable to reduce the step size only in the region(s) where artefacts are to be 

expected. In any case, however, one must be cautious not to reduce the electron 

step size below the point where the underlying multiple-scattering theory ceases to 

be valid. As an example, in MCNP the electron tracks are subdivided into so-called 

(major) steps with pre-selected path lengths corresponding to an average energy loss 

of ~8.3% (Briesmeister 2000). These steps are further subdivided into an integer 

number of sub-steps. The energy loss is sampled at the level of the major steps, the 

length of which cannot be changed by the user. Angular deflections are sampled for 

each sub-step to increase the geometric accuracy of the simulated electron track. 

The user can adjust the number of sub-steps per major step, to increase the 

accuracy of the simulation in thin material regions. An average of at least 10 sub-

steps per electron track crossing a material region is recommended (Briesmeister 

2000).  

Yet another problem lies in the crossing of material boundaries, as the 

applicability of the multiple-scattering theories commonly used in Monte Carlo codes 

is limited to electron steps that occur within a single material. In some codes, an 

electron step crossing a material boundary is simply terminated at the boundary and 

a new step is begun at the same point. To improve the accuracy of the simulation in 

geometries involving many boundaries, some of the codes that use pre-selected step 

lengths apply a correction to the sampled energy loss and angular deflection for the 

interrupted step, to account for the fact that the length of this step is less than the 

length anticipated at the beginning of the step (Seltzer 1988).  
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If the code uses arbitrary step lengths, one may gradually reduce the step 

length when an electron approaches a boundary. (Of course, for the electron to be 

able to eventually cross the boundary, the reduction of the step length must be 

stopped at some finite minimum value, which may e.g. be based on the minimum 

path length constraints of the multiple scattering algorithm being used.) After the 

boundary has been crossed, the step size is gradually increased again while the 

electron moves away from the boundary. In this way, the number of interrupted steps 

as a fraction of the total number of steps may be minimised, improving the accuracy 

of the simulation at the expense of an increase in computing time. It is noted that this 

approach may also be used to avoid step size artefacts in geometries involving very 

small material regions. This type of boundary-crossing algorithm has, for example, 

been implemented in the PRESTA algorithm. It has been shown, however, that 

PRESTA may still not be adequate when simulating the dose deposited in a small air 

cavity or in the neighbourhood of high-Z interfaces. This led to the introduction of 

PRESTA-II (Bielajew and Kawrakow 1997) which allows the user to revert to a single 

scattering model in the close neighbourhood of boundaries, thereby reducing the 

minimum path length to very small values. This appears to resolve the problems 

observed in the above-described circumstances. Another interesting solution to the 

boundary crossing problem is provided by the random-hinge method implemented in 

PENELOPE. It is claimed that this algorithm, although it handles interface crossing in 

a relatively simple (and therefore fast) way, gives rather accurate results (Salvat 

2003). 

 

7.3 Interaction data tables  

7.3.1 Photon interaction data 

In the example in chapter 1 it was explained that the total linear attenuation 

coefficient µ  is needed to sample the distance to the next collision for a given type of 

particle with a given energy in a given material. For simplicity, let us assume that the 

material consists of a single element. Then, the total linear attenuation coefficient is 

related to the total atomic cross section totσ  of that element as follows: 
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 tot
um A

ρµ σ= . (7.1) 

Here, ρ is the mass density of the material, um  is the atomic mass constant 

( um = 1 u, where u is the unified atomic mass unit defined as 1/12 of the mass of one 

atom of the nuclide 12C: 1 u = 1.66053886 ⋅ 10-27 kg), and A is the relative atomic 

mass of the target element. Note that the quantity um Aρ  (which may also be written 

as AN Mρ  where AN = 6.0221415 ⋅ 1023 mol-1 is the Avogadro constant and M is the 

molar mass of the target element) equals the number of atoms per unit volume.  

The total atomic cross section can be expressed as the sum over the cross 

sections for the different processes by which photons may interact with the atoms of 

the target element: 

 tot incoh coh n e ph.n.σ τ σ σ κ κ σ= + + + + + , (7.2) 

where τ  is the atomic cross section for the photo-effect, incohσ  and cohσ  are the 

cross sections for incoherent (Compton) and coherent (Raleigh) scattering, 

respectively, nκ  and eκ  are the cross sections for pair productions in the field of the 

nucleus and in the field of the atomic electrons (triplet production), respectively, and 

ph.n.σ  is the photonuclear cross section. It is noted that atomic cross sections are often 

expressed in units of b (barn) per atom, where 1 b = 10-28 m2.  

In a Monte Carlo simulation, not only the total cross section, but also the cross 

sections for the individual processes are needed to sample, for each collision, the 

type of interaction to be simulated. Data libraries containing these cross sections as a 

function of photon energy for (most of) the elements (as well as a list of relative 

atomic masses or molar masses of the elements) are normally provided with a Monte 

Carlo code. Some codes allow the user to choose between different data libraries 

and/or to use his own cross sections. It is to be noted that cross sections for relatively 

rare interactions, such as triplet production or photonuclear reactions, may not be 

included in the data tables provided with a given code, or they may be included for a 

limited number of elements only.  

The densities of the materials used in a simulation are normally to be specified 

by the user, since these depend on the state of aggregation (gas, fluid, solid or 

plasma) and physical condition of the material (e.g. liquid water vs. water vapour, 
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graphite vs. diamond, high-density vs. low-density polyethylene). During the initiation 

phase of a run, these densities are used to calculate the linear attenuation 

coefficients for all materials used in the simulation. This may be done according to 

equation (6.1) if a material consists of a single element. 

For chemical compounds and mixtures, the user additionally needs to specify 

either the atom fractions if  or the weight fractions iw  of the different elements 

present in the material. The linear attenuation coefficients may then be calculated 

using the mixture rule, which sums (7.1) for the different elements. If the atomic 

fractions if  are given,  

 
u

i i
ii i

i

f
f m A

ρµ σ= ∑
∑

, (7.3) 

where iA  is the relative atomic mass of the i-th element present in the material. 

This equation may be understood by realising that the first term on the right-hand 

side equals the total number of atoms per unit volume in the material. If the weight 

fractions i i i i iw f A f A= ∑  are given, equation (7.3) can be written as: 

 
u

i
i

i i

w

m A

ρµ σ=∑ . (7.4) 

Here, the term ui iw m Aρ  equals the number of atoms of element i per unit 

volume.1  

It has been pointed out that the mixture rule ignores changes in the atomic wave 

function resulting from changes in the molecular, chemical, or crystalline environment 

of an atom (ICRU 1989). With the exception of the fine-structure regions above 

absorption edges, errors arising from this approximation are expected to be less than 

a few percent for photon energies above 10 keV. At very low energies (10-100 eV), 

errors of as much as a factor of two can occur. 

A variety of photon cross section compilations have been published during the 

past decades. A few examples are the works by Biggs and Lighthill (1988), Cullen et 
                                            

1 For Monte Carlo treatment planning purposes, a method has been proposed to derive the linear 

attenuation coefficients of the various tissues present within the patient directly from CT data, rather 

than calculating them from their density and chemical composition. This is discussed in more detail at 

the end of section 8.3. 
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al (1989, 1997), Hubbell (1969, 1982), Hubbell and Seltzer (1995), Johns and 

Cunningham (1983), McMaster et al (1969), and Storm and Israel (1970). Such 

compilations are usually based both on theoretical calculations and experimental 

data and may contain cross sections for (almost) all elements over a wide range of 

photon energies. An extensive overview of the current status of photon cross section 

data in the medical and biological context has recently been published by Hubbell 

(1999). Nowadays, computer programs such as XCOM (Berger and Hubbell 1987, 

Berger et al 1999) and EPICSHOW (Cullen et al 1997, Cullen 2002) are available to 

extract photon interaction data for elements, compounds and mixtures from large 

databases. The reader may be interested to know that some databases are available 

online, for example the XCOM database (http://physics.nist.gov/xcom) and the 

EPDL97 database (http://www-nds.iaea.org/epdl97/, see also 

http://www.llnl.gov/cullen1/) 

The uncertainties in recent compilations of cross sections vary depending on 

the energy range and element. For low-Z materials, one currently assumes an 

uncertainty in the total attenuation coefficient of about 5% between 1 keV and 5 keV, 

about 2% between 5 keV and ~20 keV, about 1% for ~20 keV to ~10 MeV, above 

which it falls to about 0.5% at ~30 MeV (Hubbel 1999, ICRU 2001). Although there 

are no clear statements on how these uncertainties are to be interpreted, it seems 

reasonable to assume that they correspond to a confidence limit of 95% 

(approximately two standard deviations) and are of type B (ICRU 2001). If 

photonuclear reactions are ignored, this may lead to errors in the total attenuation 

coefficient in excess of 5% (but never more than 10%) at the peak energy of the 

photonuclear giant dipole resonance, which occurs around 12 MeV for heavy 

elements and around 24 MeV for light elements. 

Needless to say, the accuracy of any radiation transport calculation depends 

critically on the accuracy of the input data, of which the cross sections form an 

important part. Differences between simulation results obtained for the same problem 

with different codes are sometimes due to differences in the radiation transport 

algorithms (in other words, differences in the way in which the physics are modelled 

by the codes), but they may also be due to differences in the input data. Such 

differences may exist in the input data provided by the user (e.g. differences in the 
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specifications of the materials and/or the problem geometry), or in the interaction 

data libraries provided with the code. As an example of the latter situation, DeMarco 

et al (2002) reported differences of up to 10% in the photoelectric cross section for 

water at 30 keV between the standard (DLC-200) data set used by MCNP, which is 

based on photoelectric cross sections from the compilation by Storm and Israel 

(1970), and the most recent XCOM dataset (Berger et al 1999). It is noted that the 

calculation of the total photoelectric cross section for materials in for example 

EGSnrc, performed by the PEGS utility, is also based on the Storm and Israel (1970) 

data (Kawrakow and Rogers 2003). 

7.3.2 Electron interaction data 

The Coulomb-force interactions between fast electrons (or positrons) and a 

material can be categorised into three types according to the relative magnitude of 

the classical impact parameter b compared to the atomic radius a (Attix 1986).  

In so-called soft collisions, the electron passes the atom at considerable 

distance (a >> b) and therefore interacts with the atom as a whole, leading to 

excitation, or ionization by the ejection of a valence-shell electron. Thus, the amount 

of energy transferred per interaction is of the order of a few eV only. However, since 

large values of b are clearly most probable, an electron undergoes many soft 

collisions and these are therefore responsible for a significant fraction of the total 

energy transferred to the medium. Under certain conditions a very small part of the 

energy spent in soft collisions can be emitted in the form of Cherenkov radiation. 

However, the corresponding energy loss is negligible (<0,1%) compared to that due 

to ionization and excitation and therefore this effect is normally neglected in dose 

calculations. 

When b ~ a (hard or knock-on collisions) it becomes more likely that the incident 

electron will interact primarily with a single atomic electron, which is then ejected from 

the atom with considerable energy and is called a delta ray or knock-on electron. 

Although hard collisions occur much less frequently than soft collisions, a 

considerable fraction of the energy of the primary electron may be transferred to the 

secondary electron in a single interaction.  
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When b << a, the Coulomb-force interactions takes place mainly with the 

nucleus. In the majority of these interactions, the electron is scattered elastically, only 

loosing the negligible amount of kinetic energy necessary to conserve momentum. 

Elastic scattering is therefore not a mechanism for energy transfer, but it is an 

important means of deflecting the electron. In condensed-history Monte Carlo 

simulations, elastic scattering is often treated separately from the energy-loss 

interactions. In a few percent of the cases in which the electron passes near the 

nucleus, an inelastic radiative interaction occurs resulting in the emission of a 

bremsstrahlung photon. 

It is customary to subdivide the electron stopping power (i.e., the expectation 

value of the energy loss per unit path length, /dE dx ) into the collision stopping 

power, which accounts for the energy loss due to soft and hard collisions, and the 

radiative stopping power, which accounts for the energy loss due to bremsstrahlung 

production: 
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 We first discuss the collision stopping power. If the material consists of a 

single element with atomic number Z, the energy loss per unit path length due to 

collisions in which less than a fraction η  of the electron kinetic energy E is transferred 

can be written as (ICRU 1984): 
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where, for electrons: 
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or, for positrons: 
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In these equations, ρ, um  and A have the same meaning as in equation (7.1), Z 

is the atomic number, τ is the electron kinetic energy in units of the electron rest 

energy 2
em c , and er  is the classic electron radius. Furthermore, β equals the electron 
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speed as a fraction of the speed of light c and 1( 2)ξ τ −= + . Finally, I is the mean 

excitation energy in the same units as E, and δ is the density effect correction. The 

latter two quantities will be discussed further below. 

The quantity given in Equation (7.6) is the restricted stopping power, which 

accounts for the energy loss due to soft collisions plus those hard collisions in which 

the fraction of primary electron energy transferred to the secondary electron is less 

than η. This may be the quantity of interest in Class II codes (see section 7.2), in 

which the energy loss (and angular deflection) of the primary electron is calculated 

for each individual collision in which a knock-on with an energy larger than a certain 

minimum is created. In such codes, the condensed history approach is only used to 

account for those collisions in which an amount of energy smaller than this minimum 

is transferred.  

In Class I codes, the energy loss due to all collisions is accounted for by the 

multiple scattering formalism. In this case one may be interested in the (unrestricted) 

collision stopping power, which follows from Equation (7.6) by substituting η = 1/2 for 

electrons, or η = 1 for positrons.2 This only affects the quantity ( , )F τ η± , as follows: 
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It is to be noted that Equation (7.6) is valid under the condition that the velocity 

of the incident electron is large compared to that of the atomic electrons. This 

condition may no longer be satisfied if the incident electron energy becomes 

comparable to or smaller than the kinetic energies of the most tightly bound (K-shell) 

atomic electrons, which may exceed 100 keV for high-Z elements. In principle, a so-

called shell correction may be added to Equation (7.6) to extend the validity of this 

equation to lower energies. While this is commonly done in the calculation of cross-

sections for heavy charged particles, such a correction is less straightforward for 

                                            
2 If the primary particle is an electron, the two electrons emerging from the collision are 

indistinguishable according to the Dirac theory. By convention, the electron with the largest energy is 

therefore referred to as the primary, so the maximum value of η is 1/2. 
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electrons and positrons, as is for example discussed in Report 37 of the ICRU 

(1984). Therefore, no shell correction has been included in the well-known cross-

section compilation given in that report, and the same is true for the electron and 

positron cross sections used in many current Monte Carlo codes; see, for example, 

Briesmeister (2000) and Kawrakow and Rogers (2003). It has been estimated that 

the possible error resulting from this approximation may be about ~3% at 5 keV, ~7% 

at 2 keV and 10-15% at 1 keV in low-Z materials such as water. In high-Z materials, 

however, the error could be considerably larger (ICRU 1984). 

The only non-trivial quantities in Equation (7.6) are the mean ionization energy I 

and the density effect correction δ. These parameters are discussed in the following. 

The mean excitation energy, a geometric average of all the excitation and 

ionization energies of a medium weighted by the corresponding oscillator strengths, 

is a parameter that needs attention in the calculation of stopping powers. Except for 

some simple atomic gases, this parameter cannot be derived by calculation alone. 

For most materials, I is therefore determined with the help of experimental data 

(ICRU 1984, Berger 1988). A complication is that, due to molecular binding effects, 

the value of I depends on the chemical composition and the physical state of the 

medium. A well-known collection of I-values for the elements and various materials of 

dosimetric interest has been compiled by the ICRU (1984). Estimated uncertainties in 

the ICRU compilation range from a few to more than 10% percent. However, it is 

pointed out that the sensitivity of the collision stopping power to changes in I (i.e., the 

relative variation in magnitude of the collision stopping power divided by the relative 

variation in I) is only moderate. For e.g. liquid water the sensitivity is > 0.1 for 

energies below ~500 keV (~0.2 at 1 keV) and falls off to a few percent around 10 

MeV.  

When an electron or positron passes through a material, this results in the 

polarization of the atoms in the material. This dipole distortion of the atoms in turn 

decreases the electromagnetic field acting upon the particle. The density effect 

correction δ accounts for the resulting reduction of the collision stopping power which 

is particularly noticeable in condensed media. Different methods to derive the density 

effect correction have been discussed in Report 37 of the ICRU (1984) and by Berger 

(1988). The method used most often today is the one proposed by Sternheimer (see, 
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for example, Sternheimer et al. 1982), which in principle is approximate but has the 

important advantage that it can be used to calculate δ for any material in a way that is 

consistent with the experimentally determined mean excitation energy and appears to 

show very good agreement (within a few tenths of a percent) with values obtained by 

more elaborate methods. 

For an accurate calculation of the mean excitation energy and the density effect 

correction, some codes require the user to specify whether the material is in the 

gaseous or condensed (solid or liquid) state and whether the material is a conductor 

or an insulator. (Report 37 of the ICRU (1984), for example, may provide the 

interested reader with an impression of how such information can be used in the 

derivation of these parameters.) For accurate results, it is important that the user 

pays attention to such details. A Monte Carlo code may also provide the user with 

options to print out the stopping powers, mean excitation energies, density effect 

corrections, etc., that have actually been used in a calculation. This may provide an 

important means to check the validity of a calculation or to explain differences 

between results obtained with different codes. 

The equations given above for calculating the mass collision stopping power are 

valid for materials consisting of a single element. The mass collision stopping power 

for a compound or mixture can be calculated using the mixture rule, i.e., as the 

weighted sum of the mass collision stopping powers of the constituent elements. 

However, if the same mean excitation energies are used for the constituents as for 

the corresponding elemental substances, some error is introduced because of the 

neglecting of molecular binding effects. In Report 37 of the ICRU (1984) it is 

discussed how the accuracy of the mixture rule can be improved by assigning values 

for I that depend on the type of compound and the physical state of the medium.

  

It is noted that for accurate modelling of knock-on collisions, knowledge of just 

the collision stopping power is not yet sufficient. More detailed information regarding 

the electron impact ionisation cross section may be required, such as, for example, 

shell-by-shell total cross sections in order to calculate the probability of emitting X-

rays and Auger electrons subsequent to inner-shell ionisations. This subject has for 

example been discussed by Seltzer (1988). 
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The expectation value of the energy loss per unit path length due to radiative 

collisions, or the radiative stopping power, is given by (ICRU 1984, Seltzer 1988): 
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where nd / dkσ  is the differential cross section for the emission of a photon of 

energy k due to the interaction of the electron with the screened Coulomb field of the 

nucleus and ed / dkσ  is the corresponding cross section due to the Coulomb 

interaction with one of the atomic electrons, while the upper limit of the energy of the 

photons emitted in electron-electron interactions is: 
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Expressions for nd / dkσ  and ed / dkσ  cannot be given in a general form 

covering all energies. Instead, separate evaluations are usually made for low 

energies (typically < 2 MeV), intermediate energies (typically 2-50 MeV) and high 

energies (typically > 50 MeV). The radiative stopping power tends to increase nearly 

linearly with E in the MeV region. Furthermore, it is approximately proportional to Z2. 

Electrons are attracted by atomic nuclei and repelled by the atomic electrons. The 

opposite is true for positrons, and therefore the bremsstrahlung cross sections for 

electrons and positrons are not the same. The differences are small at high energies, 

but at low energies the bremsstrahlung cross sections for positrons are considerably 

smaller than those for electrons.  

The estimated uncertainty stated in Report 37 of the ICRU (1984) for collision 

stopping powers is 1% to 2% for electrons with energies above 100 keV. Between 10 

keV and 100 keV, they are estimated to be 2% to 3% for low-Z materials and 5% to 

10% for high-Z materials. The uncertainty of radiative stopping powers are estimated 

to be 5% below 2 MeV, 2% to 5% between 2 MeV and 50 MeV and 2% above 50 

MeV. These uncertainties are considered to be approximately at the level of two 

standard deviations and of type B (ICRU 2001).  

Although the uncertainties in the cross sections give rise to uncertainties in the 

end result of any dose calculation, it is to be noted that the relationship between 

these uncertainties is not simple. It is, for example, possible for errors to (partly) 

cancel out against each other in a simulation involving many electrons of different 
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energies moving along different paths. In this context, it is worthwhile to note that, for 

example, measured dose distributions from electron beams in water are very well 

reproduced by Monte Carlo results obtained with recent codes and cross section 

libraries. 
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8 Geometry and material specification 

8.1 Volumes 

Geometric volumes are defined by their boundary surfaces. Examples of 

surfaces are planes, cylinders, spheres, cones and more complicated structures. 

Codes such as GEANT4 and MCNP provide powerful geometric capabilities using 

so-called “combinatorial geometry” where complicated volumes are defined by 

defining logical operations on intersecting surfaces or volumes. In Penelope, surfaces 

are defined by matrix equations, which is a valuable tool for complicated geometries. 

For the modelling of a linear accelerator, however, a combination of relatively simple 

surfaces generally suffices.  

8.2 Voxelised phantoms 

For the modelling of the patient, a voxelised geometry is usually defined based 

on CT data. The voxels are rectangular and the resolution is based on the CT 

resolution. In general the dose is scored in CT-based voxels. The material 

composition and density of each voxel are determined from the CT number in that 

voxel as explained in the following. 

8.3 Conversion of CT numbers into tissue parameters 

8.3.1 Conversion of CT numbers into electron density 

Each pixel in a CT image is coded with a CT number H, which is given in 

Hounsfield units as: 

  

           (8.1) 

 

where µ  and 
2H Oµ  are the mean values of the linear attenuation coefficients for 

the material in the voxel and for water, respectively. 
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Already in 1978 the first approaches to use CT numbers for determining tissue 

parameters were published (Kijewski et al 1978). A year later Parker et al (1979) 

derived a relationship between CT number and electron density for tissues at 

energies where the Compton interaction is dominant (so that photon absorption due 

to the photoelectric effect is negligible). Compton scattering is proportional to electron 

density.  This is not the case for photoelectric absorption, which may contribute for 

approximately 10% to the attenuation at typical CT photon energies (Brooks et al 

1981). Therefore it is recommended that the highest available energy on the CT 

scanner be used. In the work of Brooks, the Compton component of the Hounsfield 

unit HC was determined by using dual-energy scanning or with a theoretical 

correction based on the chemical composition. The relative electron density ρe can 

then be determined from the relationship: 

  

          (8.2) 

 

where ρew is the electron density of water. The electron density can then be 

converted to mass density ρ via:  

   

          (8.3) 

 

where n and nw = 1.802 are the number of atomic units per electron for the 

specific material and for water, respectively, and ρw is the density of water. These two 

relations demonstrate that a CT scanner can be calibrated in terms of both electron 

density and mass density.  

When using conventional treatment planning systems, CT calibration is mainly 

needed to determine inhomogeneity corrections for dose calculations. As the 

correlation between the heterogeneity correction factors and the electron density is 

well known, scanners are therefore calibrated in terms of electron density 

(Constantinou et al 1992). For Monte Carlo applications, however, it is primarily the 

mass density that is of interest (as this is an input parameter in most Monte Carlo 

engines). Nevertheless electron density is often used in Monte Carlo systems 
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because most scanners are already calibrated for conventional planning systems, so 

that this calibration curve can be used directly (Ma et al 1999).  

In the work of Henson and Fox (1984) a direct linear relationship between the 

CT number and the linear attenuation coefficient is demonstrated for cortical bone, 

without a need for determining the Compton component of the Hounsfield unit. 

Parker et al (1979) already did the same for calcium chloride solutions. McCullough 

and Holmes (1985) obtained a calibration curve consisting of two linear parts 

corresponding to the high- and low-Z regions. The curves show an overlap around H 

≈ 100. In that region care should be taken. An alternative is the use of discrete 

electron density - CT number pairs and a linear interpolation between those pairs (Ma 

et al, 1999). Constantinou et al (1992) demonstrated significant differences between 

calibration curves of different scanners, which illustrate the importance of individual 

scanner calibration. 

 

8.3.2 Conversion of CT numbers into tissue composition 

In a Monte Carlo dose engine not only the density needs to be determined but 

also the material (chemical composition) of each voxel. For Monte Carlo treatment 

planning the conversion from CT numbers to material properties is one of the steps 

that determine the accuracy of a calculation (du Plessis et al 1998). To correlate the 

CT number with the elemental compositions of the tissues, the CT number scale is 

often divided into discrete intervals corresponding with different tissues (De Marco et 

al 1998, Hartman Siantar et al 1997, Ma et al 1999, Wang et al 1998, McCullough 

and Holmes 1985). Normally up to six media are defined: air, lung, adipose, water, 

muscle, bone (in the example in figure 8.1, 5 materials are defined). 
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Air Lung Soft 
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bone
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(a) 

 

(b) 

 

(c) 

 

Figure 8.1: (a) Example of a conversion scheme from CT HUs to material 

compositions using 5 pre-defined materials (the given numbers are arbitrarily 

selected and should not be used in practice). Figure (c) illustrates the medium 

numbers obtained by converting the Hounsfield number data shown in figure (b). 
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In some of the previously mentioned papers, the CT scanner was calibrated 

with tissue equivalent materials to relate HUs with electron density. However, the 

chemical compositions of the tissue substitutes differ from those of real tissues. This 

appears to lead to large dose deviations (Verhaegen and Devic 2005). An interesting 

solution to this problem is introduced by Schneider et al (1996). Their method, the 

stoichiometric calibration method, is summarised below because of its importance: 

 

• A set of materials (these materials do not really need to be tissue equivalent) 

with known chemical compositions are scanned in the appropriate CT scanner 

in order to obtain the corresponding Hounsfield units. 

• This information is fitted to an equation linking the Hounsfield unit and the 

electron density. Via linear regression the three parameters of this equation 

can be determined. 

• With these fitted parameters the Hounsfield units of real tissues are calculated 

using the tabulated chemical composition of these tissues. 

• These data are then fitted to obtain the calibration curve for conversion of 

Hounsfield units into tissue /chemical composition. 

 

This method is not free from criticism: as stated by De Kock and Schreuder 

(1996) the procedure is not valid for high-Z elements such as calcium. The influence 

of this inaccuracy is not known, however.  

Du Plessis et al (1998) investigated the influence of different tissues on the 

dose distribution. Using Monte Carlo calculations, 16 body tissues were investigated 

and combined in subsets that can be assumed dosimetrically equivalent. The tissues 

in each subset are then given the same chemical composition. They found that the 

use of seven subsets is enough to obtain an accuracy of 1 %. In the cases of bone 

and lung a further subdivision corresponding with the mass density appeared to be 

necessary. In this subdivision all subsets have the same chemical composition – this 

assumption is a drawback for skeletal tissues (Schneider et al 2000) - but a different 

mass density. This means that not only the chemical composition but also the density 

must be discretised.  
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An alternative method is described by Ma et al (2002): in the EGS4 code used 

in MCDOSE the density is determined from the linear relationship between 

Hounsfield unit and mass density in a continuous way (as opposed to using a fixed 

density per interval). This has the disadvantage that the density correction on the 

stopping powers, which is applied to all materials before the actual Monte Carlo 

calculation, is generally calculated for a different density (the average of the 

corresponding CT subset). It appears that this effect can safely be neglected, 

however.  

As stated by Schneider et al (2000) the method described by du Plessis et al 

(1998) has the disadvantage that it is applied for one specific beam quality only (i.e., 

an 8 MV photon beam). In principle it should be applied for all beam qualities used. 

Therefore Schneider et al (2000) describe an alternative way by focussing on the 

tissue parameters extracted from CT. Their method is based on the stoichiometric 

method introduced by Schneider et al (1996). Their scanner was calibrated by 

scanning 16 materials with known chemical composition to determine the parameters 

in the equation that link mass densities to Hounsfield units, using a least square fit. 

With the resulting equation they calculated the Hounsfield units for 71 human tissues, 

illustrating that it is difficult to identify tissues with different density and chemical 

composition by their Hounsfield unit, especially in the Hounsfield unit range between 

0 and 100 (the soft tissues). The dosimetric effect of this limitation was not 

investigated, however. For Monte Carlo calculations, a database of 24 subsets with 

different chemical compositions was proposed. This number was not based on 

dosimetric results as in the work of du Plessis (1998), but on the estimated accuracy 

of the calculated Hounsfield units of the tissues. For the determination of the mass 

density, a bi-linear relationship was obtained with a discontinuity around H ≈ 100.  

8.3.3 Conversion of CT numbers into interaction probabilities 

Instead of converting Hounsfield units to material properties such as density and 

chemical composition, it is also possible to extract interaction probabilities directly 

from the Hounsfield unit. This technique was applied by Kawrakow et al (1996) in the 

electron Monte Carlo code VMC where the collision and radiation stopping powers 

are correlated with the Hounsfield unit. The photon extensions XVMC (Fippel 1999) 
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and VMC++ (Kawrakow 2000) of VMC also extract the attenuation coefficients for 

Compton scattering and pair production directly from the CT data. This method 

seems interesting as all material properties vary continuously with the Hounsfield unit 

and thus there is no influence of arbitrarily chosen boundaries separating discrete 

material subsets. In addition, this method does not require a calibration of the CT 

scanner.  

On the other hand, it is not straightforward to implement this method in existing 

Monte Carlo software. Furthermore it is very difficult to model all possible interactions 

of electrons and photons with materials. Therefore in VMC and XVMC some types of 

interaction were neglected.  
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9 Accelerator modelling  

9.1 General aspects 

In Monte Carlo simulations, modelling of any radiation source consists of 

sampling required information about initial particles, namely the type of particle, its 

starting coordinates, direction cosines, energy, charge and particle weight. The 

particle weight is a statistical parameter necessary for the application of variance 

reduction techniques, see section 11. In the case of MCTP the primary source is the 

initial electron beam that enters the linac head (see figure 9.1).  

 

 

 

 

Figure 9.1: A model of a linac head (reproduced with kind permission of M. 

Fippel). The upper part consists of an electron source hitting the target and all 

components from target to mirror. The lower part contains the beam modifiers (MLC 

and jaws). For MCTP applications the phase space plane is usually situated just 

below the mirror, in contrast with this figure. 
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The linac can be divided into an “upper” part consisting of components that 

remain fixed for all possible beam settings (patient independent part) and a “lower” 

part consisting of the beam modifiers (patient dependent part). The upper part is 

modelled only once and a so-called phase-space file is generated at the entrance of 

the lower part. This phase-space file contains all required parameters (particle type, 

coordinates, direction cosines, energy) of a large number of particles entering the 

lower part of the linac. This file (possibly in parameterised form, see section 9.3) is 

then used as input for the actual MCTP calculation in which the lower part of the linac 

(beam modifiers) and the patient are handled in one process. 

Since the first papers of Petti et al (1983a, 1983b), numerous works about the 

application of Monte Carlo techniques for modelling of linear accelerators have been 

published. Among the most prominent is the paper of Udale-Smith (1992), illustrating 

modelling of a complete linac for electron beams using EGS4. However, at that time 

Monte Carlo results were either very noisy or required very long calculation times 

(sometimes up to weeks). Another important event was the introduction of BEAM in 

1995 (Rogers et al 1995), a system based on EGS4 but fully prepared for 

radiotherapy physics. Although other Monte Carlo code systems are also used for 

radiotherapy, EGS4 has had a significant lead in the field since the introduction of 

BEAM. Therefore, the following paragraphs are written from the BEAM-point of view. 

Still, for other code systems the methodology will be similar, apart from some 

additional work to develop the module for describing and modelling the linac. 

9.2 Modelling of the linac head  

As modelling of the linac head is the subject of an excellent topical review 

recently provided by Verhaegen and Seuntjens (2003) this subject will only be 

handled briefly here. Accurate dose calculations for radiotherapy treatment planning 

are only possible when the radiation beams are accurately modelled. In order to 

perform an accurate simulation of a linac beam, the following information is required: 

 

• An accurate description of the characteristics of the initial electron beam as it 

emerges from the bending system. The minimum data set consists of peak 

energy and approximate spot size (Sheikh-Bagheri and Rogers 2002).  
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• An accurate description of all parts in the linac head and their mutual position. 

This description not only contains the geometry of the parts, but also the 

material composition and density (Antolak et al 2002, Van Battum et al 2003, 

Van der Zee and Welleweerd 1999). It should be noted that the density of 

sintered parts, such as X-ray targets, depends on the degree of sintering. 

Furthermore, metallic parts may consist of more than one metallic element, 

e.g. a tungsten target may be alloyed with rhenium. It is therefore important to 

obtain accurate information from the linac manufacturer in this respect. 

• The objective of the simulation, as this can greatly influence the settings for 

cut-off energies and whether the use of variance reduction techniques is 

permitted (see section 11). The required standard deviation determines the 

number of source particles to be simulated. 

9.3 Virtual source model 

A phase-space file describing the output of the upper part of the linac head can 

be used as input for the particle transport through the beam modifiers (jaws, MLC, 

etc.) and the patient. As this file can be as large as several gigabytes, a virtual source 

model may be used as an alternative .  

A virtual source model (see figure 9.2) is a parameterisation of a phase space 

file consisting of several sub-sources and serves as a particle generator for a Monte 

Carlo simulation. In figure 9.2, which represents a schematic overview of the virtual 

source model used in XVMC (Fippel et al 2003), two virtual photon sources are 

modelled (representing the contribution from target and flattening filter) and one 

electron source. It should generate particle distributions that are similar to the 

distributions from the original phase space file (within the accuracy required).  

The validity of the virtual source model has been proven for fixed field size 

electron and photon beams (Deng et al 2000, Fix et al 2001, Fippel et al 2003, 

Francescon et al 2004, Schach von Wittenau et al 1999). The main advantage of the 

source model is the fact that it can be rapidly optimised for different linacs, starting 

from a set of measurements. Detailed information of the upper part of the linac head 

is less crucial. This is advantageous as it is not always straightforward to obtain 

correct information from the vendors.  Another advantage (especially of a 
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measurement based source model) is that it does not contain noise as a phase-

space file does. So noise in the phantom/patient then originates solely from the dose 

deposition itself and the so-called latent variance (Sempau et al 2001) is negligible.  

A virtual source model should successfully pass a number of tests to verify that 

it mimics the original phase space file with great accuracy: 

 

• Particle distributions generated by the virtual source model are similar to the 

original distributions from the phase space file (e.g. energy and angular 

distributions). 

• Combined distributions generated by the virtual source model, such as the 

combination of angular and energy distributions, are similar to the original 

distributions from the phase space file. 

• The virtual source model is capable of generating correct dose distributions for 

irregular and offset fields compared to measurements.  

 

It is important not to incorporate too much detail about the construction of 

different linacs, as this greatly reduces the general applicability of the source model. 
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Figure 9.2: The concept of a virtual source model (reproduced with kind 

permission of AAPM from Fix et al (2004)). 
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9.4 Beam modifiers 

Most of the calculation time of a full MCTP system is spent in the jaws and 

MLC. When tracking photons or electrons through thick, high-Z materials, many 

particles are lost, so it requires a lot of CPU time to obtain sufficient particles that 

manage to cross these parts. Much attention has been paid to modelling of these 

components, especially the MLC. Effects of tongue and groove geometry, inter-leaf 

leakage and intra-leaf transmission have been investigated thoroughly (Kim et al 

2001, Deng et al 2001, Van de Walle et al 2003, Heath et al 2004).  

To avoid the waste of CPU time on tracking of photons and electrons through 

the MLC and other collimating devices, approximations are often introduced. Boyer 

and Li (1997), focusing on the differences between the light field edge and the 

radiation field edge for an MLC with curved leaf ends, investigated an analytical 

solution for transmission through the leaf ends. This paper affected the ideas of other 

groups. For example the Stanford group, who had introduced the Monte Carlo dose 

engine MCDOSE, worked out a ray-tracing based method for calculating 

transmission through the MLC geometry (Chen et al 2000). This method only works 

with virtual source models, so a phase-space file cannot be used as input. To enable 

a full understanding of the order of the approximation introduced by this method, it is 

described in some detail below. 

 

• Assuming a sub-source of a virtual source model, a line can be drawn with a 

certain angle from the source through the MLC to the isocentre plane. In the 

MLC this line is split up into many short intervals and for each end point of an 

interval it is determined whether the point falls inside or outside tungsten. By 

summing all the points inside the MLC material, the total distance travelled 

through tungsten is estimated. Based on this distance, a weight correction 

factor e-µ(x,y) can be determined, with µ the attenuation coefficient (averaged 

over the energy spectrum determined from a measurement of the transmission 

through a leaf) and x, y the coordinates of the projection point in the isocentre 

plane.  
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• Electrons in the tungsten are immediately discarded. 

• Every particle hitting one of the jaws is immediately discarded. 

• For extended virtual sources the distance travelled through tungsten in the 

MLC is approximated as if the source is a point source. The initial particle 

weight is taken into account (convolution method). 

 

The advantage of this method is that the weight correction map (sometimes 

called an ‘attenuation map’, or a ‘fluence matrix’, or even an ‘intensity matrix’) can be 

calculated before the actual particle transport is started, i.e. before performing the 

particle transport through the beam modifiers (this is even possible for dynamic MLC 

movements). During particle transport, a straight line is drawn from the source to the 

phantom, applying the already known attenuation correction, so that no CPU time is 

wasted in the collimating devices. 

Deng et al (2001), also from the Stanford group, introduced MLC2MAP to 

investigate the influence of tongue and groove, which was originally not taken into 

account in MCDOSE. They illustrated that for a single IMRT treatment field the 

maximum tongue and groove effect could be up to 10 %. But for a treatment using 

more than 5 gantry angles the effect can be ignored for the cases they studied, 

especially taking into account patient set-up errors. 

The group of Richmond, Virginia (the authors of the dose engine MCV), 

criticised the method described above as no beam hardening effect was taken into 

account (Keall et al 2001, Siebers et al 2002). Therefore they introduced a ray-tracing 

technique comparable to that of the Stanford group but with several extensions. 

 

• First order Compton effect is included, to take into account leaf scatter.  

• The attenuation coefficient is energy dependent. 

• Tongue and groove is taken into account. 

• Phase-space files can be used as input. 

 

Their method can be described as compressing the MLC into a thin layer (Keall 

et al 2001). Siebers et al (2002) enhanced the accuracy further by dividing the leaf 

geometry in different so-called non-re-entrant regions (see reference for details). 
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Within these regions no cross leaf transport is taken into account. Siebers et al 

(2002) give a few examples of transport errors that can occur in this model, although 

they state that these errors can be minimised by increasing the number of non-re-

entrant regions. They also state that the beam-hardening effect of the MLC is very 

well reproduced by including first-order Compton scattering, while ignoring electron 

transport (bremsstrahlung, electron scatter) and pair production. Several benchmarks 

provide good results. This method is 200 times faster than full Monte Carlo transport 

(using MCNP) when applying the model to a fully blocked field (all leaves closed). So, 

even though this is a ray-tracing technique that needs to be applied for every single 

particle (it is not possible to determine an intensity matrix in advance due to the 

generality of the phase-space file), a large increase in speed is obtained. An 

illustrative explanation of ray-tracing which is generally applicable (also for phase-

space files) is given in figure 9.3.  

For electron beams, instead of fully simulating the electron applicator, a 

parameterization can be used which takes into account the general construction of 

the applicator (Ebert and Hoban 1995, Cygler et al 2004). However, electron beams 

are quite sensitive for small details such as material composition (Rogers et al 1995, 

Antolak et al 2002, Van Battum et al 2003), which may differ between manufacturers.  
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X2 
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Figure 9.3: Ray-tracing technique. As illustrated in the figure, one simply sums 

the geometric path lengths X1 and X2 in the leaf material to apply an attenuation 

correction. 
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10 Dose scoring  

10.1 Dose determination 

To calculate the dose in a given volume, essentially two approaches are in use 

by current Monte Carlo programs: the kerma approximation and summing of the 

energy deposited. These methods are described in the following. 

10.1.1 Kerma approximation 

When charged particle equilibrium is assumed, one can use a simplified 

algorithm for calculating the dose. Charged particle equilibrium implies that in any 

volume, the amount of energy carried out of that volume by electrons, is equal to the 

amount of energy carried into it by electrons. Therefore, under this assumption, one 

can neglect electron transport. It is well known that this approximation is often not 

accurate enough, but in some cases it may be applied to parts of the dose calculation 

(see Chapter 11). 

The main advantage of the kerma approximation is that the dose can be 

calculated as the photon fluence Φ(E) times an energy dependent fluence-to-dose 

function H(E), where E is the energy of the (incoming) photon. (Sometimes H(E) is 

written as E(µ/ρ).) The function H(E) can be determined for each material at the 

beginning of the simulation. During the simulation of the particle tracks, one can 

calculate the fluence efficiently by a so-called track length estimator. Such an 

estimator uses the fact that the average length of a track through a volume is an 

unbiased estimator of the fluence in that volume. So if a photon with energy E travels 

a distance d through a cell, the program will add H(E)d/m to the dose estimate, where 

m is the mass in the volume. 

10.1.2 Energy deposition 

The dose can also be calculated by summing the energy deposited in voxels. In 

this case, for each source particle, we need to know how much energy entered the 
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voxel, and how much left it: the difference being the energy left behind in the voxel. 

No approximations are needed for this method. 

A possible concept for implementing this method is illustrated by the so-called 

*F8-tally of MCNP. For each particle that crosses one of the boundaries of a voxel, its 

energy is added to, or subtracted from the dose estimate, depending on whether the 

particle enters or leaves the voxel.  

An alternative approach (as applied in EGSnrc) is that for each particle step the 

energy deposition is scored in the corresponding voxel. As this scoring procedure is 

very fast (the voxel number is always in memory and must not be searched for as in 

MCNP) this does not significantly slow down the code. 

 

10.2 Scoring grids 

In most dose engines for Monte Carlo treatment planning, dose is scored in 

geometric voxels that are based on CT data. Unless the CT resolution is decreased 

to limit the number of voxels, this may lead to unacceptably high memory usage (> 2 

GB for a phantom consisting of 150 slices of 512x512 voxels per slice). An alternative 

to decreasing the CT resolution, is the usage of a scoring grid that is superimposed 

on the geometric grid, decoupling scoring from geometry (see figure 10.1).  

 

This is e.g. the case in Peregrine (Hartmann Siantar et al 1997) where the 

maximum number of scoring voxels is limited to 1503, and in MCDE (Reynaert et al 

2004). The scoring grid can be defined in such a way that particle transport is 

minimally slowed down by the scoring voxels (De Smedt et al 2004). The same 

technique is used in the ORANGE code, which is an efficient extension of MCNP for 

scoring dose in a large number of voxels (Van der Marck and Hogenbirk 2004, Van 

der Zee et al 2005).  

Due to decoupling of scoring and CT grids, it becomes possible to choose 

smaller grid spacings in certain regions (e.g. in interesting anatomical structures), 

and larger ones elsewhere.  
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Figure 10.1: The principle of using a scoring grid (spherical voxels), which is 

independent from the CT-based material grid. 

 

10.3 Spatial resolution 

The scoring resolution (volume of the scoring voxels) is an important parameter 

that has a large effect on calculation time. The statistical uncertainty in the dose 

depends on the number of events occurring in, or in the direct neighbourhood of, a 

specific voxel. Therefore, increasing the volume of a voxel with a factor 2 has the 

same effect on the uncertainty in that voxel as doubling the number of histories. So to 

gain efficiency, large scoring voxels can be used. On the other hand, the use of 

excessively large voxels may lead to volume-averaging artefacts, especially in the 

neighbourhood of large dose gradients.  

For dose engines that have the dose scored directly into the CT voxels, 

modifying the resolution of the CT grid has two effects: the first effect is the definition 

of the CT materials which influences the particle transport; the second effect is the 

volume-averaging of the energy deposited in each voxel. When a separate scoring 

grid is used (as discussed in the previous paragraph) both resolutions can be chosen 

independently, which may offer advantages (De Smedt et al 2005). So it is always 
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best to optimise this parameter for a set of patients before using the dose engine in 

clinical practice.  

This issue becomes even more important in low density regions such as lung 

tissue. On one hand, it seems necessary to model the geometry with a high 

resolution because of highly inhomogenous tissue. On the other hand, statistical 

uncertainty is an important concern in lung tissue due to its low density. Hence the 

possibility to choose the geometric and scoring resolutions independently is of much 

advantage in lung tissue. 

  

10.4 Conversion of Monte Carlo results to dose to water  

Monte Carlo dose calculation systems normally determine the dose to the 

medium in which the transport is simulated. Conventional dose calculations for 

photon beam treatment planning report dose to water. When comparing Monte Carlo 

results with results obtained in conventional systems the Monte Carlo results must 

therefore be converted to dose to water.  

Additional arguments why dose to medium should be converted to dose to 

water are that dosimetry calibration protocols are based on absorbed dose-to-water 

standards and that TCP and NTCP data are given in terms of dose to water. The first 

of these additional arguments can be countered by stating that it is possible to 

convert measurements and conventional dose results to dose to medium. The last 

argument may seem somewhat stronger since biological data in terms of dose to 

media are not available. When using a treatment planning system with a TCP/NTCP 

based objective function it therefore seems best to determine dose-to-water. On the 

other hand one might argue that dose to medium is closer to reality. An interesting 

point/counterpoint discussion on this topic is provided by Liu and Keall (2002). 

A conversion method based on the Bragg-Gray cavity theory is proposed in the 

work of Siebers et al (2000b, 2000c). The conversion factors are the unrestricted 

water-to-medium mass collision stopping power ratios averaged over the energy 

spectrum of the electrons (excluding delta rays). With MCNP calculations these 

authors determined the conversion factors as a function of depth in a phantom for 6 

MV and 18 MV photon beams of a Varian linear accelerator. A depth dependence 
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was only found for air. Upon conversion, the dose conversion is about 1% for soft 

tissues and lung, and up to 12 % for bone depending on the beam quality. For a 

clinical case a shift of the dose volume histograms (DVHs) in target and critical 

organs is clearly visible.  

This paper raised an interesting discussion concerning the uncertainty in the 

Monte Carlo dose information due to the CT data to medium conversion. Because of 

the large medium to water conversion factors, the choice of the material boundaries 

on the Hounsfield scale becomes critical (Fippel and Nüsslin 2000). This is an 

argument in favour of either the use of many material subsets in the CT conversion 

process or the use of a non-discrete conversion method such as that implemented in 

VMC (Kawrakow et al 1996),  XVMC (Fippel 1999) and VMC++ (Kawrakow 2000). A 

possible improvement might be obtained by using imaging-based automated 

recognition of organs and bones to improve the accuracy of composition 

determination (Siebers et al 2000c).  
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11 Variance reduction techniques and approximations  

11.1 Introduction  

Obtaining sufficient accuracy in Monte Carlo calculations may require very long 

calculation times. To make Monte Carlo calculations more efficient, variance 

reduction techniques have been introduced. The efficiency η is defined as η=1/(σ2T), 

where σ2 is the variance and T is the total calculation time for N histories (sample 

size). The variance, σ2, is proportional to the inverse of the sample size N. Therefore 

the efficiency is a sample size independent quantity. If the calculation time per history 

decreases or the variance decreases for a fixed sample size, the efficiency of the 

Monte Carlo calculation increases, as a consequence of the definition of efficiency. 

For instance, the use of variance reduction techniques and approximations is 

required in electron transport codes to obtain sufficient accuracy within acceptable 

calculation times. 

The success of variance reduction techniques depends on the situation, as the 

application of a variance reduction technique costs some additional calculation time 

per source particle. This loss (additional calculation time per source particle) has to 

be weighed against the gain (reduction in statistical uncertainty for a given number of 

simulated source particles). Because one is interested in knowing the dose with a 

prescribed (statistical) uncertainty, success depends on the reduction of the 

calculation time that is needed to obtain the required accuracy. However, it is not 

uncommon to find that a specific variance reduction technique in fact increases the 

calculation time. 

An extensive description of variance reduction in general can be found in James 

(1980). Recent work on the application of variance reduction for dose calculations is 

described by e.g. Kawrakow and Fippel (2000). 

In the next sections we discuss how the variance is determined and several 

commonly available variance reduction techniques in Monte Carlo dose calculations. 
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11.2 Variance of a Monte Carlo calculation 

As the Monte Carlo method is a stochastic process, the result obtained is an 

estimate of the mean and corresponding standard deviation. The most 

straightforward method is to split the calculation into e.g. 10 sub-calculations (starting 

with different random seeds) and to combine to obtained dose results to determine 

the mean and the standard deviation. A better estimate is provided by determining 

these values on a history by history basis (see Rogers et al 2002). When working 

with phase-space files (when modelling a linear accelerator head e.g.) the problem 

becomes more complicated as the mean and standard deviation should be 

determined as a function of the primary histories that enter the linac head, while the 

phase space file contains secondary particles as well. In BEAMnrc this problem is 

solved by  tagging the primary histories.  

 

11.3 Variance reduction techniques 

11.3.1 Particle splitting 

In a simulation of a linac and a patient, it is inefficient to track all particles in all 

directions, even if they do not go towards the patient. The simulation should be 

geared towards getting more  particles to the patient, so as to deposit energy in the 

target volume. The technique called “particle splitting” is designed to do that: as soon 

as a particle gets closer to the target volume than a prescribed distance, the particle 

is “split into two”. This means, the program copies the current properties of the 

particle (position, energy, direction of flight) to a newly created one, which the 

program will “save” temporarily. Then the program goes on with the simulation of the 

first particle, almost as if nothing has happened. After the program has finished with 

this particle, it returns to the “copy” of the particle, and simulates the subsequent 

flight and interactions of that one. However, because different random numbers will 

be used for this one, this particle will follow a different path, and deposit energy at 

different places compared to the original particle. 
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In essence we have simulated one particle in the linac to get two particles in the 

patient. This is clearly more efficient, but also it is clear that we have affected the 

result itself, not only the statistical uncertainty: we have increased the probability that 

a certain particle will enter the patient. We have to balance this effect by assigning 

less importance to particles that have been split. In a Monte Carlo program, each 

particle is assigned a statistical “weight”. The calculated physical effect of each 

particle has to be proportional to its weight. In case of an energy deposition 

algorithm, a particle with weight w, that deposits energy E inside a certain voxel, 

contributes wE/m to the dose estimator inside that voxel (where m is the mass inside 

the voxel). 

So when the Monte Carlo program splits a particle into two, it reduces the 

weight of both particles by half. In that way, the total energy that can be deposited by 

both particles is ½wE+½wE=wE, which is the same as for the initial particle. 

Similarly, the program can split particles into e.g. five particles and reduce the weight 

of all five to w/5. The application to a particular situation will determine to what extent 

this is useful. 

Particle splitting is e.g. often used for the bremsstrahlung photons in the target 

inside the linac head. Splitting factors of the order of 25 are not uncommon. 

11.3.2 Russian roulette 

Russian roulette is the inverse of particle splitting. Particle splitting multiplies 

particles that get closer to the target volume and reduces their weight. Russian 

roulette, on the other hand, reduces the number of particles that move away from the 

target volume, while increasing the weight of the remaining ones. 

Suppose a particle with energy E and weight w moves further away from the 

target volume than a prescribed distance. The program chooses whether to keep this 

particle (with, for example, 50% probability) or not. If it keeps it, the weight is 

multiplied by two. If it does not, the particle is “killed”, that is, the program simply 

forgets about it. 

The Russian roulette technique can also be applied to situations where some 

particles have very low weights compared to others. Such situations can arise 

because of other variance reduction techniques. 



 

 

 

83

11.3.3  Interaction forcing 

It is very inefficient to track many particles through the target volume if they 

hardly ever deposit energy. For such cases, there is a technique called interaction 

forcing that ensures that whenever a particle enters certain designated volumes, it 

will undergo an interaction in that volume (and thereby deposit energy in that 

volume). The way in which this is implemented is the following. Suppose that for a 

particle with Monte Carlo weight w, the probability that an interaction in the 

designated volume will occur is 5%. The Monte Carlo program splits the particle into 

two: one particle (with weight 0.05w) that will interact in the volume, and an identical 

particle (with weight 0.95w) that will not. 

The only difficulty is now the selection of the step size for the particle that will 

interact. Without interaction forcing, the probability that an interaction will occur is 

P(d)=1-exp(-µd), where d is the distance the particle would travel through the volume 

when not colliding anywhere in it (see also Chapter 2). To force an interaction, this 

has to be re-scaled to unity, making the probability to travel some distance l<d equal 

to P(l)/P(d). The Monte Carlo program generates a random number r, and solves 

r=P(l)/P(d) for l: 

[ ] )1.11(                )1(1ln
1

                  )1/()1( ddl erleer µµµ

µ
−−− −−−=⇒−−=         

This expression is a modification of that in the example in Section 2.3. 

11.3.4  Exponential transform 

The exponential transform technique is designed for situations where the 

particle flux drops exponentially in a certain direction. This is typically the case in 

highly absorbing (shielding) materials. The exponential transform technique stretches 

the path length between interactions in a preferred direction. Also in this case, this 

distortion of the ‘true physics’ has to be compensated by a suitable redefinition of the 

particle weights. This variance reduction technique should be used sparingly and with 

great care. 
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11.3.5 Importance sampling 

Importance sampling is a technique that samples preferentially in those areas 

where the largest contribution to the dose comes from, i.e. where “it is most 

important”. An example of this technique was already discussed in Section 2.3, 

where the step length of a photon was set to l=−(1/µ)ln(r’), to ensure that it is 

distributed as µexp(-µ l). In this way, path lengths are generated according to the 

desired distribution, and one can set the weight of each step to one. The alternative, 

which is much less efficient, is to generate a flat distribution for the path length 

between 0 and a large maximum length, and set the weight of this step to µ exp(-µ l). 

The result would be many steps with very low weight, which would lead to very 

inefficient simulations. 

Mathematically, importance sampling corresponds to a change of integration 

variable f(x)dx → f(x)/g(x) dG(x), where G(x) is the primitive function of g(x). Points 

are chosen according to G(x) instead of uniformly, and f(x) is weighted inversely by 

g(x) = dG(x)/dx. Also in other numerical integration techniques (and even in analytical 

integration techniques) this is a well-known method often with very good results. 

The same idea can also be used in a more approximate manner, which can be 

useful if it is not known a priori where the important contributions come from. In this 

case one can e.g. define a spatial grid, and for each sub-volume of the grid keep 

track of its importance for the dose at a certain location. The importances, calculated 

on a grid, can be used for the subsequent histories by incorporating them in the 

weights of the particles. One can then use particle splitting and Russian roulette to 

keep the weights of all histories between reasonable bounds, again to reduce 

variance. Some examples of importance sampling are:  

 

• Source biasing: particles are preferentially started in the direction of interest, 

instead of isotropically.  

• Simulating a disproportionate number of high-energy particles, because these 

contribute more to the dose.  
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• Biasing of secondary particle production, such as bremsstrahlung photons, 

most of which are very soft. In this case it usually helps to have a bias towards 

more energetic photons. 

 

11.3.6 Stratified sampling 

We may feel intuitively that the reason why Monte Carlo simulation has such a 

large uncertainty is that the parameter values are sampled unevenly by the process 

of random generation, and that if the points were in this case more uniformly 

distributed the fluctuations would be smaller. Intuition is not always right, but there is 

some truth in it. The technique called stratified sampling addresses this point. Instead 

of sampling a random number ‘as usual', the interval between 0 and 1 is divided into 

several sub-intervals ('strata'), and one generates random numbers within each of the 

sub-intervals. The technique enforces that if all intervals are of equal size, they will 

have the same number of random numbers. For instance, if there are 10 intervals 

ranging from 0 to 0.1, and from 0.1 to 0.2, etc., then each interval will get N/10 

random numbers. It is intuitively clear that by doing so the points will be more 

uniformly distributed. One can show that this type of uniform stratification will reduce 

variance, although the reduction may not be large. In general this technique is safe, 

and can be used with confidence. 

11.3.7 Quasi-random numbers 

Another way of forcing the Monte Carlo parameter values to be uniformly 

distributed is to use so-called quasi-random numbers. The concept of quasi-random 

numbers arises from the realisation that the mathematical randomness of the usual 

pseudo-random numbers (see Appendix B) is neither attainable in theory nor 

necessary in practice. It is more meaningful to assure that the 'random' sequence has 

the properties, required to produce the desired result. In Monte Carlo calculations 

each random number is considered independent of the others, and the order in which 

they appear is immaterial. That is, correlations between successive points are usually 

of no importance, and this aspect of randomness can safely be abandoned for most 
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applications. An interesting comparison of integration by pseudo-random numbers 

with integration by quasi-random numbers for a specific example can be found at 

www.fenews.com/fen24/levy.html. 

For the Monte Carlo application at hand, the dose calculation, use of quasi-

random numbers is most probably an apt tool for variance reduction. Although it is a 

relatively safe technique, an option to switch it on and off is to be preferred in order to 

be able to check its impact. The Sobol’ quasi-random number sequence has been 

implemented e.g. in XMVC (Fippel, 1999). An example of Sobol’ points to sample the 

energy and angle of a particle is presented in table 11.1. The energy and angle are 

viewed as a two-dimensional phase-space that needs to be filled 'quasi-randomly’.’ 

 

Table 11.1: Example of the use of quasi-random numbers. 

 

 Quasi-random number for 

generating energy E 

Quasi-random number for 

generating angle ϑ 

 0.5 0.5 

 0.75 0.25 

 0.25 0.75 

 0.375 0.375 

 0.875 0.875 

 0.625 0.125 

 0.125 0.625 

 0.1875 0.3125 

 0.6875 0.8125 

 0.9375 0.0625 

 0.4375 0.5625 

 0.3125 0.1875 

 0.8125 0.6875 

 0.5625 0.4375 

 0.0625 0.9375 
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This example shows that quasi-random numbers do not even appear to be 

random, but they do fill the integration volume more uniformly. The numbers above 

were generated with a program downloaded from  

www.csit.fsu.edu/~burkardt/m_src/sobol/sobol.html. 

11.3.8 History repetition 

History repetition is a technique that re-uses pre-calculated histories in water. 

This is performed primarily for electron histories, because these are most CPU-

intensive. The pre-calculated histories are 'applied' to the patient with different 

starting positions, and different directions of the 'recycled' particles. Corrections are 

made to the pre-calculated histories to make them applicable to the heterogeneous 

patient environment in which they are used. These corrections are based on the 

small angle approximation for multiple elastic scattering, whilst ignoring differences in 

the discrete interaction cross sections per unit energy loss between the different 

materials. The influence of these approximations on the dose results should be 

investigated. It was reported by Kawrakow and Fippel (Kawrakow and Fippel, 2000), 

that inclusion of history repetition and various other techniques did not cause XVMC 

to deviate from EGSnrc by more than 0.8% for two different phantoms. 

The advantage of history repetition is that all interactions and tracks have to be 

sampled only once, and can be re-used several times. 

11.3.9 Woodcock tracing 

For Woodcock tracing, the maximum cross section for a large region, say the 

whole patient, is determined. The method then adds a fictitious cross section such 

that everywhere the cross section equals the maximum cross section. On the basis of 

this maximum, the next interaction site is calculated as explained in Section 2.3. This 

can be done irrespective of all the voxel boundaries in the patient. Next, it is 

determined whether this will be a 'real' interaction, or a 'fake' one (which is due to the 

fictitious cross section we have added). This depends on the local value of the 'real' 

cross section: if it is substantially smaller than the maximum, the probability is large 

that this will be a fake interaction. If so, the particle direction is unchanged, and the 
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tracking mechanism is started anew, from this new location. If, however, the 

interaction is determined to be 'real', then an interaction type is chosen, and the 

outgoing particles, and particle energies and angles are generated in the usual way. 

The advantage of this tracing technique is that it does not need to account for 

many voxel border crossings, which slow down the particle transport. This technique 

has been reported to yield an efficiency gain of roughly 20% (Kawrakow and Fippel, 

2000). 

11.3.10 Simultaneous transport of particle sets 

The dose engine VMC++ (Fippel, 1999) includes a particular technique dubbed 

‘simultaneous transport of particle sets’. It uses the continuous slowing down 

approximation (section 7.2) in combination with the transport equation in terms of 

energy (instead of path length). The claim is that in this formulation all materials are 

almost equal, which allows the program to simulate several particles simultaneously. 

The program is able to sample several quantities, such as scattering angles and 

distances to the next interaction, just once for all particles in a ‘set’. Clearly this will 

result in a speed-up of the calculation. The effect on dose results is not clearly 

demonstrated in the paper in which this technique was introduced (Kawrakow, 2000). 

11.3.11 Kerma approximation 

In general the kerma approximation assumes that there is charged particle 

equilibrium (see also section 10.1.1). In this approximation no electron movement is 

considered, i.e. all electrons are immediately absorbed locally once they are created. 

In general, this approximation is not accurate enough for radiotherapy applications. 

However, when applied carefully, one can speed up the calculation while 

compromising the dose distribution only marginally. For instance, one could apply the 

kerma approximation only to secondary and higher order photons below a certain 

cut-off energy (Fippel, 1999).  Alternatively one can apply it far away from the patient, 

because electrons in that area will probably not reach the patient (Ma et al, 2002). 
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11.3.12 Energy cut-off 

A simulation can be made much faster, by stopping a particle once its energy 

drops below a certain threshold. Based on insight in its physics, one can estimate the 

path length for a particle, given its energy and given the material it is travelling 

through. If this path length is below the required spatial resolution, we can stop the 

particle and assume its energy is absorbed locally. This can be done for both photons 

and electrons, but the typical cut-off energies will differ for both particle types. 

11.3.13 Step size 

In case of electron transport, the step size in the program is important (section 

7.2 for details). In some programs the user can vary the step size to achieve either 

greater accuracy (by choosing smaller steps) or faster simulations (by choosing 

larger steps). This choice should be carefully made. 

11.4 Risks of variance reduction 

11.4.1 Two types of risk 

Basically, there are two ways to increase the efficiency of Monte Carlo dose 

calculations. One is to lower the variance σ2 of the problem by means of 'statistical 

methods'. The other is to reduce the amount of time spent per history, which can e.g. 

be done by tampering slightly with the physics of the problem, without influencing the 

end result, the dose distribution, too much. Both techniques have inherent pitfalls. 

Reduction of the variance is often achieved by probing selected parts of the 

geometry more than other parts or by generating selected energies, or selected 

angles, etc., more than others. For example, if we are able to force many photons 

towards the patient, the variance of the dose calculation in the patient will be 

reduced. However, the danger is that other parts of the geometry, say parts of the 

shielding of the accelerator head, may not have been probed at all. In reality photons 

can scatter off the shielding and then hit the patient. If our Monte Carlo calculation did 

not generate such photons, relevant dose contributions will be missed. If this under-

sampling is severe, it is possible that also the statistical error estimate does not 
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include this effect. Then, we are led to believe that the error is small, whereas in fact 

we have not accounted for entire parts of our geometry. Therefore care should be 

taken when applying statistical techniques to reduce variance. Still, these techniques 

are powerful tools to improve the efficiency of a Monte Carlo calculation. 

Reducing the calculation time per history by simplifying the physics involved 

may also be dangerous.  For instance, selecting a photon energy cut-off (photons 

below this energy are not transported any more), one assumes that these low-energy 

photons will deposit their energy at their current location. In reality, they will travel a 

short distance before being absorbed somewhere. The value for the cut-off should be 

chosen carefully, in accordance with the required spatial resolution. For each 

simplification, which is applied to achieve a higher efficiency, one should estimate the 

effect on the dose distribution to justify the simplification. If this is difficult, one can 

always perform a single run without the simplification, or with a less severe one, just 

to check. 

11.4.2 Example of variance reduction 

In this subsection the example of a beam collimator will be considered (see 

Figure 11.1). Photons entering the collimator material are far less likely to eventually 

reach the phantom below, compared to photons that pass through the opening in the 

middle. Therefore the efficiency can be increased by not always following a photon, 

and the electrons it creates, once the photon has entered the collimator. This can be 

achieved by applying Russian Roulette (10.2.2). For instance, if only one photon in a 

hundred should be tracked through the collimator, Russian Roulette with a 1:100 

survival rate can be applied.  

To estimate the effect of this variance reduction technique on the dose 

calculation, the dose profile across the beam just after entering the phantom is 

plotted. The dotted curve gives the results without using Russian Roulette, the 

dashed curve when applying Russian Roulette 1:100, while the solid line holds for 

RR 1:10000. In all three simulations the calculation time was the same.  
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Figure 11.1: Example of variance reduction a: simulated geometry; b: fluence 

profiles for three different RR-values. 

 

The plot illustrates that the dose profile calculation inside the primary beam 

benefits from the Russian Roulette technique. On the other hand, just outside the 

beam, the solid curve underestimates the dose. This was caused by “killing” most 

photons that entered the collimator. What is not shown in the picture is that this 

underestimation is larger than the estimated standard deviation. Therefore, if we 

would only look at the solid line and its standard deviation, we could not possibly 

know that there is a problem. Another interesting example is provided by Ma et al 

(2005). 

 

11.5 Denoising 

11.5.1 Introduction 

The Monte Carlo dose calculation technique is a stochastic method, providing a 

mean dose and a statistical variance on the mean dose. Sufficient histories must be 

sampled to achieve “smooth” dose distributions. Noise introduces several negative 

effects in Monte Carlo treatment planning:  
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• Due to the noise the visualisation of dose distributions can be degraded (Miao 

et al 2003). 

• Noisy dose distributions can cause problems in the optimisation process 

(Fippel and Nüsslin 2003) when using gradient methods. Problems can be 

expected when the objective function contains a factor that maximises the 

dose homogeneity in the PTV. In that case noise may appear as dose 

inhomogeneities to the optimisation process.  

• Buffa and Nahum (2000) illustrated that DVHs can be broadened by noise 

when the statistical variance is too large. This is especially important in the 

PTV because of the sharp gradient at the high dose region of the DVH (Jiang 

et al 2000).  

• TCP estimates can be underestimated due to noisy dose distributions (Buffa 

and Nahum 2000). This is a result of low dose values (due to noise) in some 

voxels, which influences the TCP as all tumour cells must be killed to be able 

to control the tumour. Any “cost function” shows a systematic difference when 

it is calculated using a noisy distribution. This is shown in a mathematically 

rigorous way in Kawrakow 2004. In the same work it is also illustrated that this 

effect can be corrected for. 

• Dose prescription cannot be based on one point as in conventional planning, 

due to the noise in that voxel (Ma et al 2005). A possible solution is to use a 

relative isodose surface for prescription, as stated by Ma et al (2005). 

So, apart from leading to uncomfortable visualisation, noise can also have an 

effect on the actual treatment planning. One possible solution is the simulation of a 

large number of histories to minimise statistical fluctuations. This is generally not 

practical without the application of variance reduction techniques, approximations 

and/or denoising. Recent overviews of effects of statistical noise on treatment 

planning are provided by Kawrakow (2004) and Ma et al (2005).  

 

11.5.2 Denoising of DVHs 

Two groups introduced techniques for smoothing the DVHs (Jiang et al 2000, 

Sempau and Bielajew 2000). In the method of Jiang et al (2000) the Monte Carlo 
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DVH is treated as blurred from the noiseless DVH. A technique similar to image 

restoration is then used to obtain the noiseless DVH. To this end an estimate of the 

noiseless DVH is blurred and the difference with the MC image is minimised with a 

least-squares minimisation method. An iterative method is used to solve this problem. 

This procedure was applied to a hypothetical case and to some clinical applications 

where the differential DVH contained only one peak. For more general cases the 

algorithm has not been tested. In the paper of Sempau and Bielajew (2000) a 

deconvolution method was used. They regarded the DVH obtained with a limited 

number of histories as the “true” DVH (obtained by using an infinite number of 

histories) convolved by the noise. 

11.5.3 Denoising of 3D dose distributions 

The methods described in the previous section have as limitation that only 

DVHs are smoothed while other dose distribution based output is not (TCP, visual 

inspection isodoses). Therefore Kawrakow (2002) introduced a method to denoise 

the dose distribution. A three-dimensional generalisation of a Savitzky-Golay digital 

filter was used with an adaptive smoothing window size (i.e. the number of 

surrounding voxels that is used). The size of the smoothing window is based on the 

statistical uncertainty in the voxel that is smoothed. A rejection method is used to 

ensure that no systematic bias is introduced. Five evaluation tests were introduced to 

validate the denoising method and to ensure that no bias is introduced. For these 

tests two dose distributions are compared, namely the “smoothed result’ which is the 

dose distribution obtained with a limited number of histories and de-noising; and the 

“benchmark result” obtained by simulating a large number of histories (without de-

noising). The five tests are summarised below: 

 

• By visual inspection of isodose-lines the differences between the benchmark 

and smoothed results should be minimal (this was used in the work of Deasy 

(2000)). 

• Difference area: to quantify the difference between the two DVHs 

corresponding to the smoothed and the benchmark result, the difference area 

of the DVHs is determined. This difference should be small. 
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• Maximum dose difference: Dmax in the PTV will be over-predicted by the MC-

calculation due to noise. The difference between Dmax and the average dose 

must be small. For this technique a homogeneous dose in the PTV is 

assumed.  

• Mean-square difference: a measure of the agreement between the benchmark 

and the smoothed dose distribution.  

• x%/ y mm test: the fraction of voxels with a smoothed dose value that differs 

more than x% from a benchmark dose value at this point and there is no point 

in the benchmark dose distribution which is closer than y mm to this point that 

has the same dose (see Van Dyke et al 1993). 

 

These evaluation tests have become a standard for smoothing algorithms used 

in Monte Carlo treatment planning. In comparison with simply running sufficient 

histories to reduce the noise below a certain level, a speed increase of 2 to 20 was 

obtained, depending on the accuracy test used. 

Deasy et al (2002) introduced a method based on wavelet threshold denoising. 

The dose distribution d is separated into the smooth function s and noise n, i.e. d = s 

+ n. d is an array of dose values that is linearly transformed into its discrete wavelet 

coefficients W(d) = W(s) + W(n). All W(d) values below a positive threshold are set 

equal to zero. When d is then reconstructed from W(d), the dose array d will be 

smoother. Again the calculation speed can be increased by a factor 2 or more.  

Fippel and Nüsslin (2003) introduced the so-called IRON (iterative reduction of 

noise) method, which is based on the minimisation of the second partial derivative of 

the dose with respect to the three coordinates of a voxel. As the first derivative is not 

altered, dose gradients should be maintained. Only local dose differences are 

smoothed in this way. A restoration function is used to limit the correction applied to 

the dose. The statistical uncertainty is used, but the method also works without this 

information. This method was tested for phantoms and an IMRT treatment plan, 

obtaining reliable results whilst increasing calculation speed by a factor of 2 to 10. 

Miao et al (2003) used adaptive anisotropic diffusion filtering. In this technique, 

smoothing is formulated as a diffusive process, which is suppressed or stopped at 

boundaries by selecting locally adaptive diffusion strengths. During each iteration, the 



 

 

 

95

dose in a voxel will be augmented or decremented with a value that is determined by 

taking into account the partial differentiation in each direction of the three dimensions 

multiplied by their importance, based on the statistical uncertainty in this voxel. The 

number of iterations must be specified by the user. Using an excessive number of 

iterations alters the resulting dose information. In a recent paper by El Naqa et al 

(2005) the techniques described above were compared with the Content adaptive 

median hybrid filters introduced by El Naqa et al (2003). Three criteria were used for 

this comparison, namely improvement of the mean square error with respect to a 

reference dose map (obtained by applying a large number of histories), by the 

maximum dose difference relative to the reference dose map, and by a 2%/2mm 

pass/fail. It is postulated that pre-denoising uncertainties larger than 5 % are too 

large. None of the smoothing techniques were found to make the agreement to the 

benchmark worse in all cases studied (including real clinical cases).  
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12 Monte Carlo treatment planning 

At present, Monte Carlo dose calculation engines are mostly used as a 

benchmarking tool for conventional TP systems, both retrospectively or prior to 

treatment. The ultimate goal is to obtain a treatment planning system entirely based 

on a Monte Carlo dose engine, i.e. where the dose engine is integrated into the 

optimisation loop (forward optimisation or inverse planning).  As stated by Jeraj et al 

(2002), using an inaccurate dose algorithm will not only introduce dose errors, but will 

also lead to a wrongly optimised beam set used for treatment, the so called 

“convergence error”.  

There are, however, several problems. The effect of statistical uncertainties on 

the calculated dose distribution (noise) might complicate the optimisation process if 

dose inhomogeneities in the PTV are penalised (Jeraj and Keall 2000). The main 

problem is that it seems practically impossible to restart the Monte Carlo calculation 

several times within the optimisation loop, as one calculation is quite time consuming 

already.  

There are two major possibilities to tackle this problem, which can roughly be 

described as forward versus inverse planning. In a forward planning process, which 

is easiest to implement, the Monte Carlo method is used in combination with a 

conventional dose engine (e.g. pencil beam), providing an initial guess of the fluence 

distribution (or of the beam configuration concerning beam weights and leaf settings). 

The conventional dose engine is also used for intermediate steps. An interesting 

method described by Laub et al (2000) can be summarised as follows: 

 

1. Use a pencil beam algorithm and optimise the beam settings (MLC settings 

and segment weights) in the conventional way 

2. Perform a Monte Carlo calculation with the beam settings obtained in step 1  

3. Use this Monte Carlo dose map to obtain new beam settings with the pencil 

beam optimisation routines and determine the “difference beams”, which are 

obtained by comparing the new beam settings with those obtained in the 

previous step  
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4. Determine the Monte Carlo dose distribution for the difference fields and add 

this contribution to the Monte Carlo dose map (obviously this contribution can 

be negative)  

5. If the algorithm has converged, stop here; otherwise go back to step 3 

 

The number of histories used in step 2 is only 80 % of the number required to 

obtain acceptable statistics. The number of extra histories in step 4 is limited because 

of the small cross section of these fields. The authors claim that the total number of 

histories needed for the entire optimisation is only 20 % higher than that of a single 

calculation. The problem of mixing different dose calculation methods is that the 

optimisation might fail to converge. Laub et al (2000) introduced a theorem 

concerning the maximum difference in accuracy that can still lead to convergence for 

a gradient based optimisation process. They conclude that the conventional dose 

engine should at least be a finite-size pencil beam algorithm. An equivalent method is 

applied in the Hyperion software (with the XVMC dose engine) of the Tübingen group 

(private communications M Fippel). This method is illustrated in figure 12.1.  
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Figure 12.1: The optimisation process used in Hyperion (reproduced with kind 

permission of Fippel and Alber).   
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Monte Carlo calculations are performed for beam segments generated with the 

pencil beam algorithm. The Monte Carlo dose maps of the individual segments are 

then used for a monitor unit (MU) optimisation. From this, the value of the objective 

function (cost function) is determined. If the results are not satisfactory, then a 

number of beam segments, that have a negative effect on the cost function are 

removed and new segments are generated.  

In the methods described above, the Monte Carlo dose engine is fitted into an 

existing optimisation process. In a full inverse process the optimisation algorithm is 

specifically devised for the Monte Carlo dose engine (internal optimisation). It is not 

necessary to combine this method with conventional calculations although it is 

always possible to use the pencil beam algorithm to obtain an initial guess of the 

beam settings.  

In the paper of Jeraj and Keall (1999) the initial guess is obtained by adjoint 

MCNP calculations, starting from a photon source homogeneously spread over the 

PTV (see figure 12.2).  
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Figure 12.2: Principle of inverse optimisation for Monte Carlo treatment planning 

(reproduced with kind permission from Jeraj and Keall (1999) ). 

 

This initial guess is then the starting point of the iterative optimisation process. 

All beams are divided into so called bixels (or beamlets) with small dimensions and 

for each individual bixel a dose distribution is obtained before the actual optimisation 

algorithm determines the weights of the individual bixels. In the paper of Jeraj and 

Keall a simulated annealing optimisation algorithm is used. The method only works in 

2D (because of the high memory requirements).  

Approximately the same method was used by Bogner et al (1999) and by He 

(2003). In this last work (which is a PhD thesis), the method was applied in 3D and 

the memory problem was solved by only keeping in memory dose information for all 

voxels within the beam surface of an individual bixel. The Monte Carlo dose engine 

used was based on MCNP but speed was increased by a factor of 11000 by 
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implementing a faster particle transport algorithm. With this method no convergence 

problems occur, as it is purely based on Monte Carlo. It is not straightforward, 

however, to take the contribution of scatter into account in the bixel dose maps (dose 

maps of individual bixels), so accuracy might be compromised.  

Finally MCDOSE (Ma et al 1999) also provides the possibility of determining 

dose distributions for individual beamlets for inverse planning.  
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13 4D Monte Carlo dose calculations 

Time dependent geometries are a challenge in radiotherapy dose calculations. 

One source of variation is the linear accelerator (virtual wedge, dynamic MLC). In the 

past these sources of motion have successfully been introduced in Monte Carlo 

models in the past. For instance, to tackle the dynamic MLC movement, the leaf 

positions can be randomised during the simulation taking into account the time 

dependent position distributions (Keall et al 2001, Liu et al 2001, Verhaegen and Liu 

2001).  

Another aspect of a varying geometry is patient motion. This again can be 

divided into three sources of uncertainty (Ding et al 2003): positioning errors (different 

position during treatment compared to CT scan), interfraction organ motion (e.g. 

digestive system), and intrafraction organ movement (e.g. respiration-induced 

motion). Here we will focus on the intrafraction organ movement as this can actually 

be taken into account into the treatment plan. 

The effect of (residual) organ motion on radiation treatment has been 

investigated for over 20 years. Several techniques for reduction of respiration-

induced motion have been introduced, ranging from active breathing control, deep 

inspiration breath-hold, gated radiotherapy, and real-time target tracking. As this is 

not MCTP specific, readers are referred to the paper by Ding et al (2003) and the 

references therein.  

In general, organ motion is taken into account by defining the planning target 

volume (PTV) as the clinical target volume (CTV) with a margin large enough to 

ensure that the whole target is irradiated homogeneously. But in regions where 

organs at risk are close to the tumour some of this critical tissue may get included in 

the PTV (e.g. lung tissue, parotid glands, optical nerves, rectum, bladder, etc) and 

receive a high dose.  

Here we will focus on the incorporation of respiratory organ motion in the dose 

calculation. Monte Carlo is an interesting candidate for this approach as the 

calculation time of a Monte Carlo simulation does not scale with the number of CT 

data sets used for 4D planning, as is the case for conventional dose calculation 

techniques.  
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In the paper by Ding et al (2003) two CT scans are used (total inhalation and 

total exhalation) and scans for intermediate respiration phases are interpolated (see 

figure 13.1).  

 

Weighted sum 

t 

3D dose 4 3D dose 3 
 

3D dose 2  
 

3D dose 1 

BL 

Total 4D dose 

 

Figure 13.1: 4D MCTP method as e.g. used by Ding et al (2003) and Keall et al 

(2004). In this example four breathing levels (BL) are selected. For each BL a CT 

data set is obtained and the corresponding dose distributions are then summed to 

obtain the total 3D dose information.   

 

The correlation of the geometric points in the two CT maps is not trivial. Dose 

calculations are performed on different reconstructed CT phantoms corresponding to 

different intervals of the respiratory cycle (see figure 13.2).  
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Figure 13.2: Dose distributions corresponding to different intervals of the 

respiratory cycle (BL= breathing level) (reproduced with kind permission of AAPM 

from Ding et al (2003)). 

 

 

The obtained dose maps are summed taking into account the weights of the 

different maps. These weights are obtained by measuring the respiratory cycle with 

an external optical tracking system, detecting the movement of the chest-wall.  
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The method above described determines the actual dose distributions, taking 

into account organ movement, but the treatment itself is unaffected. This problem is 

tackled in the paper by Keall et al (2004). For each patient several CT datasets 

corresponding with different intervals in the breathing cycle are obtained. For each 

CT dataset the same beam directions are used, but the MLC settings are confined to 

the PTV of the dataset and thus differ from one set to another, simulating tumour 

tracking. The dose maps obtained are then combined into the so-called 4D treatment 

plan (see figure 13.3).  

 

 

Figure 13.3: Comparison of 4D Monte Carlo results for tumour tracking with the 

MLC with 3D results at different instants of the breathing cycle (reproduced with kind 

permission from Keall et al (2004)). The DVHs are for PTV, lungs, spinal cord and 

heart, respectively. 

 

Only a limited number of histories is required for each individual dose map as it 

is the sum of all maps that should provide enough statistics. Therefore the 4D Monte 
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Carlo calculation does not take more time than a 3D calculation. For a conventional 

TP system the calculation time is proportional to the number of breathing intervals. 

A different approach was introduced by Paganetti et al (2005). To take into 

account interplay effects between patient and linac movement the time information is 

included into the Monte Carlo calculation geometry by transforming voxels. Voxel 

displacement maps (VDMs) based on 4D CT information were obtained, describing 

the positional changes of voxels within a volume of interest. This work focussed on 

proton beam Monte Carlo, but the underlying principle is general. This method is 

claimed to be less cumbersome compared to the method of Keall et al and Ding et al, 

described above (Paganetti et al 2005). Recently Heath and Seuntjens (2005) 

introduced a so-called direct voxel tracking algorithm to take into account internal and 

external contour deformation by reshaping the voxels as a function of time.  
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Part III: Monte Carlo Treatment planning in practice 
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14 Monte Carlo dose calculation engines for treatment 

planning  

14.1 Pioneering work 

Excellent reviews of the application of the Monte Carlo technique in medical 

physics have been published by Raeside (1976), Mackie (1990), Rogers and 

Bielajew (1990) and Andreo (1991). In the first reference a didactic explanation of the 

principles of the Monte Carlo technique, random number generators and variance 

reduction is presented, clearly illustrating that the method was not widely used at that 

time due to the unavailability of computers and/or unacceptable long calculation 

times. The review of Mackie (1990) focussed on Monte Carlo in radiotherapy, while 

that of Rogers and Bielajew reviewed Monte Carlo applications in dosimetry in 

general. The topical review of Andreo (1991) illustrated that the Monte Carlo 

technique gained importance in radiology and nuclear medicine, but also in 

radiotherapy. More specifically, an overview of the first efforts of using Monte Carlo 

for treatment planning is presented.  Nahum (1988), Mackie (1989) and Ahnesjö and 

Aspradakis (1999) pointed out that the Monte Carlo technique was not going to be 

used for routine treatment planning due to the long calculation times. So the method 

was mainly used for verification of results obtained with conventional methods. As will 

be illustrated in the next sections, introduction into the clinic is presently ongoing. 

Webb (1979) performed calculations, ignoring the time demanding electron transport, 

leading to erroneous results close to interfaces and inhomogeneities. The problem of 

the long calculation times led to the introduction of hybrid systems as e.g. the 

superposition/convolution algorithms (Boyer and Mok 1984, Mackie et al 1985, Chui 

1985, Ahnesjö 1987). For these systems the Monte Carlo method is used to generate 

so-called kernels, which represent the dose distribution of secondary particles 

generated in a photon interaction. During the actual treatment planning calculation 

the pre-computed kernels are convolved in the patient geometry. Although the input 

of these systems is based on Monte Carlo calculations, these are not regarded as 

actual MCTP systems. Yu et al (1995) extended this method by including explicit 

electron transport, leading to longer calculation times. The macro Monte Carlo 
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method (MMC, see section 14.6) was introduced in 1992 (Neuenschwander and Born 

1992) and further enhanced in 1995 (Neuenschwander et al 1995) as a fast code for 

the transport of electron beams. The method uses pre-determined electron histories 

obtained in spherical volume elements (“kugels”) of different materials using EGS4. 

The actual MMC code then transports particles using the pre-determined kugel 

histories. Another variant of this method is the Super Monte Carlo (SMC) code, 

introduced by Keall and Hoban for electron beams (1996) and x-ray beams (1995). 

For further details the reader is referred to the excellent review paper on this and 

other dose calculation methods for treatment planning, provided by Ahnesjö and 

Aspradakis (1999). Currently, the superposition/convolution algorithms offer the best 

available “conventional” alternative for MCTP.   

Direct Monte Carlo calculations on a CT phantom were performed by 

Manfredotti et al (1990), using the UNION algorithm to limit the number of CT voxels 

by combining neighbouring voxels of the same material in one large voxel. 

The OMEGA project led to the introduction of the BEAM/DOSXYZ software (a 

set of EGS4 macros and subroutines specific for modelling of linear accelerators); an 

important step towards the practical implementation of Monte Carlo treatment 

planning (Rogers et al 1995). The code allows for detailed modelling of a linear 

accelerator head and in DOSXYZ, CT data, representing the patient geometry, can 

be inserted, by only generating a couple of input files. Most MCTP dose engines 

currently used in the clinic are partly based on this software package. Although 

applicable for actual MCTP calculations, large calculation times were the remaining 

drawback. 

Therefore, the Voxel Monte Carlo (VMC) code was introduced by Kawrakow et 

al (1996) as a fast (direct) Monte Carlo dose engine for electron beams with a set of 

sophisticated variance reduction techniques (see section 14.4). For photon beams, 

Peregrine (Hartmann Siantar et al 1997) was introduced as a Monte Carlo dose 

engine using multiple variance reduction techniques (see section 14.5). 

Wang et al. (1998) described a photon beam Monte Carlo dose calculation 

method for clinical cases, based on EGS4. Several variance reduction techniques 

were implemented into this dose engine. First, the number of first collisions in each 

image voxel is determined based on attenuation or through ray tracing. This 
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minimises the statistical uncertainty due to the otherwise random sampling. The 

derived improvement in calculation speed is about 5 to 10 fold. Second, by treating 

contiguous voxels having a similar atomic number Z as a single medium with varying 

density, they eliminate the need to resample interaction parameters at each voxel 

boundary. Only three different materials were defined, based on the density or 

Hounsfield units, namely water, bone and metal.  

Francescon et al. (2000) applied the BEAM code to realistic mediastinal and 

breast treatments and compared the Monte Carlo results with those of the Pinnacle 

treatment planning system using the collapsed cone convolution algorithm (CCC). 

The agreement was reasonable (within 2.5%) for large fields. For narrow beams, one 

can expect disagreement between the Monte Carlo calculation and the treatment 

planning system (Francescon et al 2000). This latter situation was not explicitly 

investigated.  

In the following sections, clinically applied MCTP dose engines are described. 

 

14.2 DPM 

DPM (Dose Planning Method, Sempau et al 2000) was introduced for simulating 

the transport of electrons and photons in radiotherapy. DPM achieves its 

performance by employing transport mechanics and electron multiple scattering 

distribution functions, which have been derived to permit long transport steps (of the 

order of 5 mm), that can cross heterogeneity boundaries. This is also made possible 

because of the stability of the random hinge algorithm employed in PENELOPE 

(Salvat et al 2003) across heterogeneities.  

The underlying algorithm is a class II consensed-history scheme, with 

differential cross sections for hard inelastic collisions and bremsstrahlung events 

described in an approximate manner to simplify sampling. The continuous energy 

loss approximation is employed for energy losses below some predefined thresholds, 

and photon transport (including Compton, photoelectric absorption and pair 

production) is simulated in an analogue manner. Woodcock ray tracing is adopted to 

minimise the computational costs of transporting photons across voxels (dimension 

typically 1mm). 
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14.3 MCDOSE/ MCSIM 

MCDOSE (Ma et al 1999) was developed as a routine dose calculation tool for 

radiotherapy treatment planning (RTP) based on EGS4 (Nelson et al 1985). 

Important features of MCDOSE are:  

• Advanced virtual source models are used as source input for both photons 

and electrons 

• Beam modifiers such as jaws, wedges, blocks, static and dynamic MLC fields 

are included in the patient simulation. 

• Several variance reduction techniques such as photon interaction forcing, 

Russian roulette, electron range/region rejection and electron history repetition 

have been implemented (speed increase typically a factor of 10-30). 

• Beamlet dose calculation for Monte Carlo inverse planning for both photon and 

electron beams. 

• Dose volume histogram (DVH) construction using patient contour information 

• Ray tracing through the beam collimating devices 

 

The most recent version of this code is called MCSIM and includes, in addition 

to MCDOSE, a collection of interfacing software. 

 

14.4 VMC, XVMC, VMC++ 

VMC (Voxel Monte Carlo system) was developed by Kawrakow et al (1996) as 

a fast calculation engine for electron beams. The stopping and scattering powers for 

the multiple-scattering simulation of electrons are determined directly from the 

Hounsfield number distribution in a continuous way and need no material 

specification (see section 7.3.3).  

Later VMC was extended for photon beams in the fast X-Ray Voxel Monte Carlo 

system (XVMC) (Fippel 1999). XVMC was further optimised by Kawrakow and Fippel 

(2000). This code was re-programmed in C++ independently by Kawrakow leading to 
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VMC++ (Kawrakow 2000a) and by Fippel who continued to call his code XVMC 

(private communication I. Kawrakow). For dose calculations, XVMC and VMC++ offer 

significant speed improvements due to an efficient boundary crossing algorithm, 

variance reduction techniques like particle splitting, Russian roulette and history 

repetition. The efficiency can be further improved by optimizing transport parameters 

such as the electron cut-off, maximum electron energy step size, photon energy cut-

off and a cut-off for kerma approximation. As XVMC and VMC++ are currently being 

introduced in several commercial TP systems, both engines are discussed below. 

14.4.1  XVMC 

In XVMC the beam collimating devices are handled by full Monte Carlo 

transport (although the electrons are modelled using the CSDA). This is, however, 

programmed more efficiently than in BEAM (Fippel 2004). 

Originally, the energy of an electron at the end of its track was deposited locally 

when its energy drops below the cut-off energy. A new approach has been 

implemented in which track-end electrons instead are transported by their residual 

range in a single 'normal' condensed history step. This modification increases the 

CPU time per history but allows higher cut-off energies, so that on balance the speed 

of the calculations is increased.  A kerma approximation (only applied to secondary 

or higher order photons with energy below the kerma cut-off energy Kcut) is 

introduced.  

XVMC (the Fortran version developed by Kawrakow and Fippel (2000)) is 

currently being implemented by scientific groups such as the McGill group of 

Montreal (Seuntjens et al 2004). They introduced an interface between a 

conventional TP system and a Monte Carlo PC cluster. The C++ version of XVMC is 

currently being introduced in commercial MCTP software, but is also used by 

scientific groups as illustrated by Krieger and Sauer (2005). 

14.4.2 VMC++ 

In VMC++ (Kawrakow 2000a), instead of introducing a virtual source model the 

speed of the simulation of the upper part of the linac head is increased by several 
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orders of magnitude by using the so-called directional radiative splitting (DRS). This 

technique is an advanced particle splitting method. Bremsstrahlung photons 

generated in the target are split into N sub-particles. Photons that are not pointed to a 

pre-defined region of interest are handled with Russian roulette. This technique 

ensures that less calculation time is spent on photons (and corresponding secondary 

electrons) that will not reach the patient (only 2-3 % of the photons generated in the 

target reach the patient).  With the combination of the DRS method and other 

variance reduction techniques, the simulation of the upper part of the linac takes only 

about 10-20 % of the calculation time in the phantom/patient geometry. VMC++ has 

been implemented as a dose engine in the commercial planning system of Nucletron 

for the simulation of electron beams. A separate “fluence engine” or source model 

generates particles that are tracked through the patient geometry using VMC++. 

 

14.5 PEREGRINE  

PEREGRINE is a Monte Carlo dose calculation engine which is commercially 

available from North American Scientific NOMOS Radiation Oncology Division since 

early 2002. It is implemented in their Corvus inverse treatment planning system, but 

can also be integrated in other planning systems that allow import and export in an 

extended RTOG file format. The software is installed on a PC cluster which is also 

delivered by the vendor. 

In PEREGRINE the beam-delivery system is divided into two parts: an 

accelerator-specific upper portion and a treatment specific lower part (Hartmann 

Siantar et al 2001). 

The upper part, consisting of the electron target, primary collimator, flattening 

filter(s) and monitor chamber is pre-defined by NOMOS based on the linac vendor’s 

model specific information. BEAMnrc generated phase space files, scored below the 

monitor chamber, are analysed and condensed into correlated histograms which 

describe the energy, radial and angular distributions for each sub-source of the 

source model (Schach von Wittenau 1999). These correlated histograms, along with 

information about the treatment specific lower part, consisting of beam modifiers such 

as MLC, collimators, apertures, blocks and wedges, are stored in a so called device 
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file for each accelerator model. To correct the output for particles that are 

backscattered in the monitor chamber, a monitor chamber correction function is 

included in the device file (Hartmann Siantar et al 2001). Finally, a dose per monitor 

unit calibration factor is included for the conversion of the number of delivered 

monitor units to the number of incident particles.   

The patient transport mesh is a Cartesian map of material composition and 

density determined from the patient’s CT scan. Dose deposition is scored in a scoring 

grid (dosels), which is independent of the material transport mesh. During the dose 

calculation, the standard deviation in the dosel receiving the highest dose is tracked 

and when this reaches a level specified by the user the simulation is terminated. The 

particle transport is based on EGS4. As a simplification, electrons and positrons are 

treated equally (Hartmann Siantar et al 2001). Variance reduction techniques such as 

Woodcock tracing, particle splitting, Russian Roulette, range rejection, and source 

particle reuse are applied to increase the efficiency of photon and electron transport. 

  

14.6 Macro Monte Carlo (MMC) 

The MMC code uses pre-computed kugels (electron histories stored in look-up 

tables, see 14.1). To handle material interfaces the diameter of the kugels is 

decreased while approaching a boundary. The MMC method was introduced in a 

period when it was not yet realistic to perform full Monte Carlo transport in treatment 

planning systems. However, this system is still used in the treatment planning system 

of Varian. Varian has benchmarked the Macro MC system (fast eMC) against 

EGSnrc for heterogenous phantoms. They state that the accuracy is comparable to 

standard Monte Carlo codes, but approximately 10 times as fast (Neuenschwander et 

al 1995). 
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14.7 Dose Engines serving as commissioning tool 

Several groups have introduced dose engines for MCTP that are mainly a 

commissioning tool for other TP systems. MCV was introduced by Siebers et al. 

(2000a) primarily as an accurate verification tool. Later ray tracing through the MLC 

was introduced to speed up calculations (Siebers et al 2002). Leal et al (2003) 

programmed an automated Monte Carlo system for routine IMRT verification (see 

figure 14.1). More or less the same was achieved by Spezi et al (2002), Reynaert et 

al (2004) and Seco et al (2005), although different methods were used.  
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Figure 14.1: Example of using BEAM and DOSXYZ as a Monte Carlo dose 

engine for treatment planning (reproduced with kind permission of Elsevier from Leal 

et al (2003)). 
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15 Available commercial MCTP systems 

As mentioned in the Introduction, vendors of clinical treatment planning systems 

have started to offer Monte Carlo dose calculation engines. An overview of the 

current state of affairs (dd. 13/12/2004) is presented in Table 15.1. It is realised that 

some or most of the information in the table is of temporary value only. Nevertheless 

the table shows how active the various commercial players are in this area. 

The information in the table was solicited from all the vendors. All entries, 

especially the future plans, reflect the information obtained from the vendors as of 

December 2004. 
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Table 15.1: Overview of (future) availability of Monte Carlo dose calculation 

engines in commercial treatment planning systems of vendors who replied to our 

survey. Status as of 13 December 2004. 

 

Company Product Release Versi

on 

Monte Carlo 

for γ 

Monte Carlo 

for e− 

Inverse 

optimisation / 

biological models 

BrainLab iPlan 

RT Dose 

Fall 2006 4.0 XVMC XVMC Yes 

CMS XiO June 

2005 

4.3.0 XVMC XVMC Yes 

 Monaco June 

2005 

4.3.0 XVMC − HYPERION 

 

Elekta Elekta-Plan 2005 1.1 XVMC −  

  2006 1.2 XVMC XVMC  

  2007 2.0 XVMC XVMC HYPERION 

Nucletron DCM (now 

OTP) 

March 

2002 

2.0  VMC  

 OTP 2003   VMC++  

  2005 1.4 VMC++ VMC++ Optim. for e− 

 PLATO − − − − − 

 TMS − − − − − 

Philips Pinnacle³ Not 

available 

yet 

6.9c 

(�ver

sion) 

− Modified DPM 

in 6.9 (AMC-

Adac MC) 

− 

Varian Cadplan − − − − − 

 Eclipse Summer 

2004 

7.2.X * Macro MC − 

Siemens KonRad July 2003 v2.1 − − − 

Dosisoft Isogray June 

2005 

− − Penelope − 

North 

American 

Scientific 

Corvus, 

Peacock 

2004 v5 Peregrine − Yes 

* Convolution/superposition (Monte Carlo based phase space), release Spring 2005.  
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16 Monte Carlo specific issues of commissioning 

16.1 Introduction 

A commercial MCTP system for IMRT treatments can be benchmarked by 

measurements, or by an independent accurate Monte Carlo dose engine (preferably 

a dose engine with only few approximations). Examples of using a MC dose engine 

for benchmarking are presented by Heath et al (2004), and Reynaert et al (2005), 

both commissioning the Peregrine system. Benchmark measurements for 3D plans 

can be performed in heterogeneous phantoms. In the method described by Ma et al 

(2003), a PMMA phantom with various lung and bone inserts is used for point 

measurements with an ionisation chamber for the beam setup intended for the 

patient treatment. The rationale of this approach is the assumption that if the 

phantom measurements and phantom calculations are in agreement for a specific 

beam set-up, then the patient calculations will also be correct for the same beam set-

up.  

In general, commissioning of MCTP systems is hardly different from the 

conventional (semi-) analytical algorithms. Good practical guide lines on how to 

commission a 3D TPS were given recently by working parties of the AAPM (AAPM 

1995, Fraass et al 1998), the ESTRO (ESTRO 2004), and the NCS (NCS 2006a). 

These reports not only describe what should be tested, but also define test 

procedures in considerable detail. However, there are some items, which are specific 

to MCTP: 

• particle source 

• segmentation 

• normalisation 

• variance reduction 

The following paragraphs will treat each of these items in more depth.  
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16.2 Particle source and beam modifiers 

Particles used in MCTP are generated from a particle source. Generally, there 

are two possible sources representing the output of the upper part (patient 

independent part) of the linear accelerator (see section 9.1 for more details):  

• a phase-space file based on a full simulation of the upper part of the linac.   

• a virtual source model, which mimics the radiation from the upper part of the 

linac head  

Both source types are normally tuned by the MCTP system vendor using a set 

of in-phantom measurements of lateral- and depth-dose distributions, provided by the 

hospital physicists, and/or on the linac vendor’s model specific information (see also 

section 9.3). A basic measurement set used to configure the MCTP system generally 

consists of some standard symmetrical fields, and possibly also a set of offset fields 

and asymmetrical fields, depending on the vendor.  

A second aspect is the handling of the transport through the beam modifiers 

(see section 9.4). If ray-tracing is used it is important to benchmark irregular fields, 

and also to verify the dose outside the field. It is preferable that the user should be 

able to switch off the ray-tracing approximation and to alter the cut-off energies in the 

linac head to perform an evaluation of the applied approximations.  

 

The quality of the final model depends on: 

• quality of the basic measurements 

• quality of the information provided by the linac vendor  

• quality of the Monte Carlo dose engine used 

Once the model is provided by the vendor, the user may perform calculations 

for non-standard set-ups to compare with measurements. If necessary the vendor 

can be asked to re-tune the source. This situation is not very different from some 

conventional TP systems.   

Periodical accelerator QA should be aimed at keeping the machine performance 

according to the particle source contained in the MCTP system as it would not be 

practical to retune the dose engine after each maintainance operation of the linac.  
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16.3 Segmentation 

In contrast to most conventional dose calculation algorithms, Monte Carlo dose 

calculation engines need to know the characteristics (e.g. composition and density) of 

the irradiated volume. Therefore an important concern in MCTP is the proper 

segmentation of matter. Thus, the conventional clinical segmentation in PTV and 

organs at risk is not sufficient. Even a segmentation based on electron density 

derived from CT-data is generally insufficient. In MCTP dose engines an additional 

segmentation converting Hounsfield numbers to matter (tissue type) is necessary 

(section 8.3.2).   

Using a CT-phantom with known composition and dimensions, a method to 

verify the segmentation process could be (Verhaegen and Devic, 2005): 

• scan the CT-phantom 

• perform an automatic segmentation by the system (=> segmentation 1) 

• calculate, for a reference setup, the Monte Carlo dose (=> MC-dose 1) 

• perform a manual segmentation (=> segmentation 2) 

• calculate, for a reference setup, the Monte Carlo dose (=> MC-dose 2) 

• compare segmentation (segmentation 1, segmentation 2 and phantom) 

• compare dose grids (MC-dose 1 and MC-dose 2) 

 

16.4 Normalization / MU determination 

In MCTP systems the beam can be calibrated directly by calculating the dose at 

the isocentre for a reference 10 cm x 10 cm field. For this field the dose per primary 

history is used to define the relationship between the dose (in Gy) and the number of 

monitor units MU. Some issues are important, however: 

• It is advisable to simulate the reference situation with a large number of 

histories in order to get the best possible statistics (0.3% or better, Ma et al 

2005). 

• It is advisable to use a high depth resolution to avoid volume averaging effects 

A problem is that the monitor output may depend on the position of the 

collimating devices due to backscatter of photons from the collimators towards the 
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monitor. For small fields the backscatter contribution increases. In an Elekta 

accelerator, the back scatter plate minimises this effect, but for e.g. a Varian machine 

these corrections are important (see e.g. Liu et al 2000, Verhaegen et al 2000, 

Hartmann Siantar et al 2001). Nevertheless, normalisation in an MCTP system is 

rather straightforward, compared to conventional systems where the MUs need to be 

linked to the particle fluence below the collimating devices (Ahnesjö and Aspradakis 

1999). 

Just as for conventional systems, MCTP calculations may be checked with a so-

called dose check program, a program based on a simple formalism to calculate the 

dose (in Gy) from the MU setting for each segment. This check can be seen as a 

prolonged commissioning on normalisation and the Gy-to-MU conversion (Spezi et al 

2002, Ma et al 2004). In Fox Chase Cancer Center, Philadelphia, USA, the MU 

calculations performed in the Monte Carlo dose engine MCSIM are routinely 

validated experimentally with a quality assurance phantom (Ma et al 2004). 

 

16.5 Variance reduction 

Variance reduction is intended to increase the efficiency of a Monte Carlo dose 

engine, see chapter 11. However, variance reduction techniques are not without risk. 

Unfortunately, whether a particular type of variance reduction can be applied safely, 

depends on the problem under study as well as on the Monte Carlo dose engine 

used. Therefore the only way to find out is to compare dose calculations with and 

without the use of a particular variance reduction technique. It is therefore desirable 

that a MCTP system enables the user to switch off variance reduction techniques and 

approximations. 

 

16.6 Literature data on MCTP verification 

Benchmarking of MCTP dose engines is as important as for conventional dose 

calculation algorithms in radiotherapy, as systematic errors in the code and problems 

with the beam model, CT conversion and the use of variance reduction techniques 
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and denoising methods may occur. Two possible ways of commissioning a Monte 

Carlo dose engine exist: comparison with in-phantom measurements and comparison 

with an independent accurate MC dose engine (such as e.g. BEAM).  

Hartmann Siantar et al (2001) have commissioned Peregrine for 6 and 18 MV 

Photon beams of a Varian linear accelerator. Measurements and BEAM calculations 

were performed to serve as a reference for the Peregrine results for PDDs, lateral 

profiles and output factors of 2cm x 2cm to 38cm x 38cm fields. Also wedge fields 

were investigated and accurate MLC commissioning was performed. Maximum 

discrepancies were less than 2 %.  

Heath et al (2004) also benchmarked the Peregrine code for 6MV photon 

beams with measurements and EGSnrc calculations. Tests were performed for 

homogeneous and heterogeneous phantoms (lung and bone equivalent slabs) for 

1cm x 1cm, 3cm x 3cm and 10cm x 10cm fields. For the 1cm x 1cm field a deviation 

of 5 % was obtained that was attributed to the large voxels used in Peregrine, 

although this assumption was not verified. An MLC experiment was performed as 

well, which provided results within 2 %. Afterwards Peregrine was used for actual 

treatment planning for IMRT of head and neck patients. 

Reynaert et al (2005) compared the Peregrine system with an accurate dose 

engine (MCDE) based on BEAMnrc/DOSXYZnrc and measurements for small beam 

segments in a homogeneous water phantom, illustrating a systematic error in the leaf 

projection of the Elekta MLC in Peregrine. This led to systematic deviations (up to 10 

%) in integral dose in the optical chiasm of IMRT head and neck patients. This 

example illustrates the importance of commissioning of commercial MCTP dose 

engines. 

Fippel (1999) evaluated the accuracy of XVMC (X-ray Voxel Monte Carlo) by a 

comparison with DOSXYZnrc in homogeneous and heterogeneous phantoms (bone 

and lung slabs). For the lung phantom small deviations were obtained (see figure 

16.1). 
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Figure 16.1: Benchmark of XVMC for a phantom containing a bone 

inhomogeneity (reproduced with kind permission of AAPM from Fippel et al (1999)). 

 

Cygler et al (2004) commissioned the electron beam Monte Carlo treatment 

planning system of Nucletron. Electron beams in the range of 6 to 20 MeV from a 

Siemens linear accelerator were investigated. Homogeneous and inhomogeneous 

phantoms (aluminum slab, hard bone ribs, air cylinder, hard bone cylinder, trachea 
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and spine) were studied. Monitor unit calculations were compared in homogenous 

phantoms with independent hand-calculated values. For all cases agreement within 5 

% was obtained. Effect of the voxel size in the MC dose engine was illustrated (see 

figure  16.2).  

 

 

Figure 16.2: Voxel size dependence in the commercial electron MCTP system 

of Nucletron (reproduced with kind permission of AAPM from Cygler et al (2004)). 

The figure below is an enlargement of the central part of the figure above. 
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The voxel size is automatically selected by the system and depends on the field 

of view. Therefore Cygler et al recommend the vendor to let the user select the voxel 

dimensions. In the mean time, this system has been used in clinical practice, which 

has increased the confidence into the results obtained and even had an impact on 

clinical decisions for certain patients (Cygler et al 2005). 

Li et al (2000) commissioned the MCDOSE dose engine with BEAM/DOSXYZ 

for electron and photon beams in homogeneous and heterogeneous phantoms (lung 

and bone slabs). Agreement within 1 % was obtained for all cases studied (see figure 

16.3). 

   

Figure 16.3: Benchmark of MCDOSE against BEAM/DOSXYZ calculations for 

heterogeneous phantom (reproduced with kind permission from Li et al (2000)). 
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16.7 Conclusion 

Commissioning of Monte Carlo treatment planning systems is, for the larger 

part, similar to that of conventional treatment planning systems. Some additional 

tests may be needed and some tests have to be altered. A careful and complete 

commissioning will, in return, give a good knowledge of the quality of the dose engine 

itself and of its integration in the planning system. It also provides the physicist with 

data that can be used to evaluate the quality of Monte Carlo dose calculation engines 

against conventional dose calculation algorithms. 
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17 Recommendations 

The aim of this report is to provide a literature overview on MCTP. In addition, 

an introduction to Monte Carlo techniques in dosimetry is provided in part 1 to allow 

the non-initiated reader to understand parts 2 and 3 of the report. The report is not 

based on practical work conducted by the current NCS sub-group. Therefore it is 

rather difficult to provide strict guidelines or recommendations, as has been the case 

in previous NCS reports. For some topics discussions are still evolving and the final 

conclusion is not known yet.  

 

17.1 Comparison of different dose engines   

Further studies comparing the superposition/convolution algorithms with Monte 

Carlo dose engines are required to determine the clinical relevance of introducing 

Monte Carlo into the clinic. A few recommendations for such studies are given below: 

1. It is necessary to demonstrate that the MC and superposition/convolution 

programs give good results (compared to measurements) in homogeneous 

phantoms for single beam irradiations. It is equally important to tune the beam 

input of a superposition/convolution system as for a Monte Carlo dose engine. 

The importance of accurate beam modelling is illustrated by Chetty et al 

(2005) and Reynaert et al (2005). Only for systems that pass this test, a 

clinical comparison is meaningful.  

2. Important parameters in  a comparison are the following:  

• technically: integral dose to a structure, differential surface of two DVHs 

• clinical relevance: all quantities that are used for planning and evaluation, 

e.g. Dmean, D90, Diso for the PTV and Dmax, Dmean, integral dose for the 

critical organs, equivalent uniform dose (EUD), TCP and NTCP and 

evaluation of clinical outcome post-treatment.  

• It is less relevant to compare volume fractions receiving a certain dose. 

Especially for DVHs with a large slope (as in the PTV) a small dose error 

can give rise to large volume errors, which are not really relevant when 
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evaluating the influence of dose errors. To give an example: if according to 

dose engine A, 40 % of the volume receives a dose of 50 Gy while in 

system B, only 20 % receives this dose, but the 20 % difference volume 

receives a dose of 49.5 Gy instead, then these two DVHs are clinically 

equivalent. It is also preferable to focus on dose (and not on NTCP or 

TCP). NTCP differences are always much larger than dose differences and 

can thus be misleading. 

• When a group of patients is investigated, not only the mean values for all 

patients should be given but also the worst individual cases. From the 

moment that a clinical important parameter (Dmean e.g.) differs significantly 

(say 5 %) in one structure of 1 patient, then the added value of MCTP over 

superposition/convolution is illustrated for the studied cases (if 

recommendation 1 is taken into account). 

 

17.2 Commissioning 

Most commercial MCTP vendors will develop a source model for the customers 

based on a set of measurements provided by the customer. As for every TP system, 

careful commissioning of this model is required. This should be performed for an 

extensive set of measurements that are appropriate for the treatments for which the 

dose engine will be used. For IMRT e.g. it is important to test small offset fields 

(regular, but also irregular to test the MLC modelling). If the model does not provide 

the required accuracy, it should be re-tuned by the vendor.  

In addition, it is important to test the algorithm in heterogeneous phantoms in 

situations where measurements can be performed adequately. Especially in 

situations of electronic equilibrium the code must be tested. Additionally, 

benchmarking a treatment plan in a patient-alike phantom is necessary as well. 

Measurement uncertainties should be taken into account though.  
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17.3 CT conversion  

Taking into account the effects resulting from the conversion from dose to 

medium to dose to water (see section 10.4) it is important to define a sufficiently large 

number of material subsets with different chemical compositions (especially for 

skeletal tissues) and to use a stoichiometric calibration method such as the one 

described by Schneider et al (1996, 2000). Each scanner should be calibrated 

individually in terms of mass density or electron density. This calibration curve can be 

used continuously or in discrete subdivisions of certain materials (lung tissue). A 

Monte Carlo treatment planning system should allow the user to enter his own 

conversion results. 

 

17.4 Conversion of dose to medium to dose to water 

At present the authors do not wish to take a stand on whether dose to water or 

dose to medium should be used. We do recommend, however, that Monte Carlo 

treatment planning system developers enable both possibilities so that users can 

make their own choice. TCP/NTCP based planning systems should preferably 

convert to dose-to-water. On the other hand the question can be raised if it would be 

possible to convert dose to water to dose to medium in the TCP/NTCP – dose 

relations. Conversion is necessary for comparison of Monte Carlo results with 

conventional dose calculations. Of course, for this purpose the dose obtained by 

conventional systems can also be converted to dose to medium. Converting dose to 

medium to dose to water will certainly increase the uncertainty in the final dose 

distribution. 

 

17.5 Variance reduction techniques and approximations 

In theory, variance reduction techniques do not introduce bias in the results as 

long as care has been taken concerning under-sampling. In the literature some 

approximations wrongly are considered to be variance reduction techniques. So the 

reader should always bare this in mind. The effect of the approximations applied in 
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some fast Monte Carlo dose calculation engines is not clear at the moment. Using 

ray-tracing through the beam modifiers or using a virtual source model might seem 

unacceptable, but nobody has demonstrated that these techniques lead to clinically 

relevant deviations. Future studies should provide more insight. MCTP systems 

should provide the user the possibility to switch of/on these approximations and 

variance reduction techniques, to study the corresponding effects.  

   

17.6 Denoising 

All methods described above have potential to increase the Monte Carlo 

calculation speed with factors ranging from 2 to 20. No method is perfect and any 

applied method should always be validated. Interesting guidance is provided by the 

acceptation criteria formulated by Kawrakow (Kawrakow, 2002). It seems preferable 

not to use smoothing, but the simulation of a large number of histories takes a very 

long time. In inverse planning an interesting compromise is the usage of smoothing in 

the first steps of an optimisation loop. Once the optimisation is finished a final Monte 

Carlo calculation without smoothing (but with a sufficiently large number of histories) 

can be performed (Fippel and Nüsslin, 2003 and Kawrakow, 2002 ). A Monte Carlo 

treatment planning system should enable the user to switch off the de-noising for 

evaluation purposes.  
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18 Conclusion 

The Monte Carlo technique has the ability to decrease uncertainty in dose 

calculations for radiotherapy treatment planning. Especially cases of small and highly 

irregular fields depositing dose in tissue containing significant inhomogeneities are 

expected to benefit from MCTP. Currently, several Monte Carlo dose calculation 

engines are being built into commercial treatment planning systems, while others are 

already available (e.g. Peregrine).  

Care should be taken that the approximations and variance reduction 

techniques applied in current dose engines do not introduce deviations from the 

result obtained with a Monte Carlo code without significant approximations. Therefore 

it is important that current fast Monte Carlo dose calculation engines are 

benchmarked by measurements and/or by Monte Carlo systems that place the 

emphasis on accuracy. Preferentially MCTP systems should allow the user to switch 

on/off approximations and variance reduction techniques, so that evaluation of 

obtained results is possible.  

It should be noted that even in a Monte Carlo dose engine without any 

approximations or variance reduction methods, several sources of uncertainty 

remain: further work seems necessary on the derivation of material properties 

obtained from CT data, where discretisation effects can lead to the use of erroneous 

cross sections. This uncertainty is increased even further when dose to medium is 

converted to dose to water, a topic which is still under discussion. In addition it is 

important that the output of the linear accelerator is modelled correctly. This can be 

done by full Monte Carlo modelling of the linac head or by a virtual source model. 

The effects of using fluence maps to model the transport through the beam modifiers 

should be benchmarked thoroughly.  

The Monte Carlo technique is able to perform 4D treatment planning 

calculations in approximately the same calculation time as a 3D calculation. This is 

for example useful in the case of dynamic MLC movement, but also for respiratory 

organ movement. In these situations the Monte Carlo technique is able to provide the 

4D dose information faster than some conventional systems. Further developments 

may be expected in this field. 
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Also in the area of inverse Monte Carlo treatment planning, interesting research 

is being performed, but much additional work remains to be done.  

The Monte Carlo method may eventually become the standard in treatment 

planning as computer technology and simulation algorithms evolve further. 

Developments in parallel computing (clusters, grid computing) as well as Moore’s law 

(the empirical observation that the number of transistors on integrated circuits 

doubles every 18 months) may significantly reduce the remaining problem of 

calculation time. 
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Appendix A. An example to illustrate differences between 

the Monte Carlo technique and analytical and numerical 

approaches.  

To illustrate the differences, the problem of calculating the area of a circle with a 

radius R=1 is used. 

A.1 Analytical Technique 

When the circle centre is positioned at the origin of a Cartesian coordinate 

system with axes x and y, the circle is defined by: 

 R=y+x
22  (A.1) 

with R=1. 

 To solve the problem analytically, one can express the y-values of both halves 

of the circle in terms of x. Integrating over all contributing values of x results in: 

 dxx-12=A 2
1

1-
∫  (A.2) 

This integral can be solved by substituting sin(t) for x and applying goniometric 

relations, yielding: 

 π=A  (A.3) 

 
 

Figure A.1: Numerical solution to the calculation of the area of a circle (solid 

line) with radius 1. The area of the regular octagon enclosing the circle represents an 

overestimation of this area. The regular octagon enclosed by the circle provides an 

underestimation of the area of the circle. In this figure n=8 (see text). 
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A.2 Numerical Technique 

The problem can also be dealt with by applying a numerical integration 

technique to solve Equation (A.2). However, for illustration purposes an alternative 

approach was chosen: The circle can be divided into n equal sectors (dashed lines in 

figure A.1). The area of each sector can be approximated by the area of the triangle 

constructed from the corner points of the sector. This will provide an underestimate of 

the area of the sector. For an arbitrary integer n greater than or equal to 4, the area 

of this triangle is sin(2π/n)/2. Multiplying this area by n gives an underestimate of the 

area of the circle. An overestimation may be derived from the triangles for which the 

third side is a tangent of the circle, perpendicular to the bisector of the top angle 

(figure A.1). For an arbitrary integer n greater than or equal to 4, the area of this 

triangle is tan(π/n). The area of the circle does now obey: 

 4n  for          )
n

( n  A  
2

)
n

2
( n

≥≤≤
π

π

tan
sin

 (A.4) 

 

Table A.1 shows the over- and underestimates for various integer values n. As 

expected, for increasing n, the difference between the two estimates decreases, 

becoming less than 0.1% for n = 100. 
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A.3 Monte Carlo Technique 
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 To calculate the area of the circle with a Monte Carlo approach, the following 

considerations are made. By random selection of values for x and y between -1 and 1 

the area of the square that encompasses the circle is sampled uniformly. The area of 

this square equals 4. For a randomly selected point (xi,yi), the function f(x,y) as 

defined by equation A.5 may be used to score whether or not the point is within the 

circle. By counting the total number of selections i (N), and the number of histories 

yielding a point within the circle (i.e. f(xi,yi)=1), the area of the circle can be estimated 

using equation A.6.  

Table A.1: Calculation of the area of a circle with unit radius, applying a numerical method. The 

under- and overestimates of the area (equation 6.4) are shown for various values of n. 

 

 Integer underestimate overestimate 

 n (n sin(2π/n))/2 n tan(π/n) 

 

 4 2 4 

 8 2.828427 3.313708 

 16 3.061467 3.182598 

 32 3.121445 3.151725 

 64 3.136548 3.144118 

 128 3.140331 3.142224 

 256 3.141277 3.141750 

 512 3.141514 3.141632 

 1024 3.141573 3.141603 

 2048 3.141588 3.141595 

 4096 3.141591 3.141593 

 8192 3.141592 3.141593 

 16384 3.141593 3.141593 
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According to the central limit theorem, the standard deviation expressing the 

uncertainty in the Area, SArea, may be estimated using the equations A.7 and A.8. 

 
N

 S4
 = S Area  (A.7) 

 

 
1-N

N

})y,xf(

yxf
=S

2
jj

N

1=j
ii

2
N

1=i

{
 - ),(
∑

∑
 (A.8) 

Table A.2 shows some results for the Monte Carlo simulations. To gain a factor 

of 10 in precision the number of histories (sample size) has to be increased by a 

factor of 100. For a relative standard deviation of 0.1% about 410000 histories have 

to be included in the calculations. For large sample sizes computer processor time 

becomes a factor of importance, as it is (nearly) proportional to the sample size. This 

is in contrast to the numerical method where the increase in n did not result in a 

significant increase in computer time. An advantage of the Monte Carlo method is the 

flexibility. To calculate the area of another object, only the test whether a point (x,y) is 

inside or outside the object and the borders from which the x and y co-ordinates are 

sampled have to be modified. 

Table A.2: Example of the calculation of the area of a circle with unit radius, applying a Monte 

Carlo method. For various sample sizes (number of histories) the area and the standard deviation  

are shown. 

 

 Sample Area Standard 

 size  deviation 

 

 10 3.2000 0.5060 

 100 3.1200 0.1657 

 1000 3.0880 0.0531 

 10000 3.1420 0.0164 

 100000 3.1506 0.0052 

 1000000 3.1423 0.0016 

 10000000 3.1417 0.0005 
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A.4 Summary 

Comparing the results for this example, it is concluded that the analytical 

approach yields an exact solution. The numerical method yields an approximation 

and, when applied in a more sophisticated way, it may yield an under- and 

overestimation. The Monte Carlo technique results in an answer with a standard 

deviation expressing the uncertainty. For the numerical approach the under- and 

overestimation are absolute (apart from truncation errors). For the Monte Carlo 

method the results have to be interpreted statistically. It is expected that for every 1 

out of 3 calculations the difference between the true value and the calculated value is 

more than 1 standard deviation. For 1 out of 20 calculations, the difference is more 

than 2 standard deviations. In Table A.2, 2 out of 7 results were not within 1 standard 

deviation, but all 7 solutions were well within 2 standard deviations. 
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Appendix B: Random numbers in Monte Carlo 

B.1 Random numbers in computers 

Monte Carlo theory approaches the result by repeatedly calculating a scoring 

function for randomly varying input variables. It is for these randomly varying input 

variables that random numbers and random number generators are considered here. 

A computer is a deterministic device, and hence incapable of producing truly 

random numbers. However, a series of pseudo-random numbers can be used to 

control the calculations. The next number is calculated via a pre-defined relationship, 

the congruence, from the previous number(s).  

An advantage of this method is that it allows for an exact reproduction of the 

random number sequence, which is valuable for debugging software. However, 

pseudo-random number sequences have to be used with care. The numbers are 

never truly random, and it depends on the application whether they are ‘random 

enough’. Problems that may arise include: 

The sequence length. Many generators produce random sequences of limited 

length, and hence may be used only for a limited number of random numbers.  

The randomness of specific digits. Generator implementations often generate 

the higher-order bits more random than the lower-order bits. 

The correlation between k-dimensional pairs. It can be shown that for some 

generators, successive pairs (I1, I2,…,Ik) will not fill up the complete k-dimensional 

space, but will lie on up to (k-1) ‘planes’. Dedicated quasi-random number generators 

may solve this. These generators actually produce no random numbers at all, but the 

numbers do cover the k-dimensional space very well. 

Bad implementations. Many examples are known of good random number 

algorithms that were implemented badly. 

Good references to tests for random number sequences are Knuth (1981) and 

Bratley et al (1983). 
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B.2 Random number generators 

The most common way to generate random numbers is by using a linear 

congruence. The sequence of integers Ij, Ij+1, Ij+2, ... is then defined by  

 m modulo   c) + I(a  = I j1+j  (B.1) 

Lehmer proposed this relation in 1948. A particular sequence is defined by m, a, 

c and I0. All are positive integers, and they are referred to as the modulus, multiplier, 

increment and seed, respectively. The choice of m, a and c are very important, and 

make the distinction between an effective and a useless random number generator. 

The sequence has an outcome between 0 and m-1. Hence, the result should be 

divided by m-1 to obtain a result between [0,1]. The formulation in (B.1) and the 

integer representation facilitates a quick implementation without truncation errors. 

Obviously, the sequence length can not be greater than m. As a rule of thumb, the 

sequence can be used to select up to m/1000 random numbers. Using it for longer 

sequences introduces unwanted correlations. The future is more and more looking 

like the past. 

A particularly good implementation is the ‘Minimal Standard’ implementation, 

proposed by Park and Miller (1988), which uses a=16807 (=75), c=0 and 

m=2147483647 (=231-1). Note that for this 32-bit implementation up to 2 million 

numbers may be generated before we need to switch to another generator. The 

equivalent 16-bit implementation may be used for only up to 64 random numbers! 

Very useful references to these and other random number generators are Press 

et al (1988) and James (1990). 

 

 

 

 


